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NOTES ON LEAST SQUARES 
 

 

 

1. INTRODUCTION 

 

The theory of least squares and its application to adjustment of survey measurements is well 

known to every geodesist.  The invention of the method is generally attributed to Karl 

Freidrich Gauss (1777-1855) but could equally be credited to Adrien-Marie Legendre (1752-

1833). 

 

Gauss used the method of least squares to compute the elements of the orbit of the minor 

planet Ceres and predicted its position in October 1801 from a few observations made in the 

previous year.  He published the technique in 1809 in Theoria Motus Corporum Coelestium in 

Sectionibus Conicis Solem Ambientium (Theory of the Motion of the Heavenly Bodies 

Moving about the Sun in Conic Sections), mentioning that he had used it since 1795, and also 

developed what we now know as the normal law of error, concluding that:  "... the most 

probable system of values of the quantities ... will be that in which the sum of the squares of 

the differences between the actually observed and computed values multiplied by numbers 

that measure the degree of precision, is a minimum." (Gauss 1809). 

 

Legendre published an independent development of the technique in Nouvelles méthodes pour 

la détermination des orbites des comètes  (New methods for the determination of the orbits of 

comets), Paris, 1806 and also as the "Méthod des moindres carriés" (Method of Least 

Squares), published in the Mémoires de l'Institut national des sciences at arts, vol. 7, pt. 2, 

Paris, 1810. 

 

After these initial works, the topic was subjected to rigid analysis and by the beginning of the 

20th century was the universal method for the treatment of observations.  Merriman (1905) 

compiled a list of 408 titles, including 72 books, written on the topic prior to 1877 and 

publication has continued unabated since then.  Leahy (1974) has an excellent summary of the 
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development of least squares and clearly identifies the historical connection with 

mathematical statistics, which it pre-dates. 

The current literature is extensive; the books Observations and Least Squares (Mikhail 1976) 

and Analysis and Adjustment of Survey Measurements (Mikhail and Gracie 1981), and lecture 

notes by Cross (1992), Krakiwsky (1975) and Wells and Krakiwsky (1971) stand out as the 

simplest modern treatments of the topic. 

 

Following Wells and Krakiwsky (1971, pp.8-9), it is interesting to analyse the following 

quotation from Gauss' Theoria Motus (Gauss, 1809, p.249). 

 
"If the astronomical observations and other quantities, on which the computation of 

orbits is based, were absolutely correct, the elements also, whether deduced from 

three or four observations, would be strictly accurate (so far indeed as the motion is 

supposed to take place exactly according to the laws of KEPLER), and, therefore, if 

other observations were used, they might be confirmed, but not corrected.  But since 

all our measurements and observations are nothing more than approximations to the 

truth, the same must be true of all calculations resting upon them, and the highest 

aim of all computations made concerning concrete phenomena must be to 

approximate, as nearly as practicable, to the truth.  But this can be accomplished in 

no other way than by a suitable combination of more observations than the number 

absolutely requisite for the determination of the unknown quantities.  This problem 

can only be properly undertaken when an approximate knowledge of the orbit has 

been already attained, which is afterwards to be corrected so as to satisfy all the 

observations in the most accurate manner possible." 

 

This single paragraph, written almost 200 years ago, embodies the following concepts, which 

are as relevant today as they were then. 

 

(i) Mathematical models may be incomplete, 

 

(ii) Physical measurements are inconsistent, 

 

(iii) All that can be expected from computations based on inconsistent measurements are 

estimates of the "truth", 

 

(iv) Redundant measurements will reduce the effect of measurement inconsistencies, 
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(v) Initial approximations to the final estimates should be used, and finally, 

 

(vi) Initial approximations should be corrected in such a way as to minimise the 

inconsistencies between measurements (by which Gauss meant his method of least 

squares). 

 

These notes contain a development of Least Squares processes applicable to surveying and 

geodesy.  Examples and exercises of least squares processes are given using MATLAB, an 

interactive, matrix-based system for scientific and engineering computation and visualization.  

The name MATLAB is derived from MATrix LABoratory and is licensed by The 

MathWorks, Inc. 
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2. LEAST SQUARES ADJUSTMENT OF INDIRECT OBSERVATIONS 

2.1. Introduction 

The modern professional surveyor must be competent in all aspects of surveying 

measurements such as height differences, linear distances, horizontal and vertical angle 

measurements and combinations thereof which form the fundamental observations used to 

determine position in space.  To obtain these measurements with any degree of confidence the 

surveyor must be aware of the principles and operation of various pieces of surveying 

equipment as well as the nature of measurements and the possible effects of errors on these 

measurements and any derived quantities.  The nature of errors in measurements, studied by 

Gauss and leading to his theory of errors (the normal law of error) is the basis of statistical 

rules and tests that the surveyor employs to assess the quality of measurements; these rules 

and tests are covered in basic statistics courses during the undergraduate degree program.  In 

the simple least squares processes and applications which follow it is sufficient to assume that 

the measurements are affected by small accidental or random errors and the least squares 

"solutions" provide a means of determining the best estimate of a measured quantity.  Least 

squares solutions also imply that the quantity of interest has been determined from a 

redundant system of measurements, i.e., there are more measurements than the minimum 

number required to calculate the quantity. 

2.1.1. Definition and classification of measurements 

Crandall and Seabloom (1970, pp. 4-5) give a definition of a measurement as: 

 

A measurement is a comparison between an unknown quantity and a 

predefined standard, determined by some measuring device and hence, 

any measured value is an approximation of the exact or true value, not 

the true value itself.  Since the true value of a quantity cannot be 

measured, any measurement contains by definition, an error. 

 

Direct measurements (or observations) are those that are made directly upon the quantity to be 

determined.  Measurements of a line by direct chaining, or Electronic Distance Measurement 

(EDM), or measurement of an angle by theodolite or Total Station are examples of direct 

measurements. 
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Indirect measurements (or observations) are not made upon the quantity itself but are made on 

some other quantity or quantities related to it.  For example, the coordinates of a point P are 

indirectly determined by measuring bearings and distances to P from other points; the latitude 

of P may be determined from altitudes to certain stars; and the height of P may be determined 

by measured height differences from a known point. 

2.1.2. Classification of errors of measurement 

Since, by definition, every measurement contains an error it is necessary to consider the 

various kinds of errors that occur in practice.  Rainsford (1968, p. 1) provides a derivation of 

the word error as: 

 

coming from the Latin errare which means to wander and not to sin. 

 

Rainsford divides errors into four classes 

 

(a) blunders or mistakes 

(b) constant errors 

(c) systematic errors 

(d) accidental or random errors 

 

Blunders or mistakes are definite mis-readings, booking errors or other like occurrences.  

They are usually caused by poor measurement technique and/or a lack of attention to detail by 

the person making the measurement.  They may be eliminated or minimized by correct and 

careful measurement techniques, and a thorough understanding of the operation of the 

equipment used for the measurement. 

 

Constant errors are those that do not vary throughout the particular measurement period.  

They are always of the same sign.  Neglecting to standardize a measuring tape introduces a 

constant error; failure to use the correct prism-offset value introduces constant errors in EDM 

measurements.  A faulty joint between sections of a levelling staff will introduce a constant 

error into height differences from spirit levelling.  Constant errors can be eliminated from 

measurements by a thorough understanding of the measurement process and the equipment 

used. 
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Systematic errors are those errors that follow some fixed law (possibly unknown) dependent 

on local conditions and/or the equipment being used.  For example, if the temperature and 

pressure (which are indicators of atmospheric conditions) are not measured when using EDM 

equipment then a systematic error may be introduced, since the modulated electromagnetic 

beam of the EDM passes through the atmosphere and its time of travel (indirectly measured 

by phase comparison of emitted and reflected beams) is affected by atmospheric conditions.  

All EDM measurements must be corrected for atmospheric conditions that depart from 

"standard conditions". 

 

Accidental or Random errors are the small errors remaining in a measurement after mistakes, 

constant errors and systematic errors have been eliminated.  They are due to the imperfection 

of the instruments used, the fallibility of the observer and the changing environmental 

conditions in which the measurements are made, all of which affect the measurement to a 

lesser or greater degree. 

 

Bearing in mind the aforementioned, it could be said that all careful measurements (where 

mistakes, constant errors and systematic errors have been eliminated) contain small random 

errors and from experience, three axioms relating to random errors can be stated. 

 

1. Small errors occur more frequently, or are more probable then 

large errors. 

2. Positive and negative errors of the same magnitude are equally 

probable 

3. Very large errors do not occur. 

 

These axioms are the basic premises on which the theory of errors (the normal law of error) is 

founded. 

2.1.3. Errors, corrections and residuals 

A measured quantity has a true value and a most probable value.  The most probable value is 

often called the best estimate and the two terms can be taken as synonymous. 
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No matter how many times a quantity is measured, its true value will remain unknown and 

only a best estimate can be obtained from the measurements.  In the case of a single measured 

quantity, the best estimate is the arithmetic mean (or average) of the measurements. 

 

If a quantity has been measured a number of times, the difference between the true (but 

unknown) value and any measurement is the true error and the difference between the best 

estimate and any measurement is the apparent error. 

 

These relationships can be established by defining a correction to have the same magnitude as 

an error but the opposite sign.  In surveying, the terms correction and residual are regarded as 

synonymous, and are universally denoted by the letter v. 

 

Suppose an unknown quantity x is measured n times giving values 1 2 3, , , , nx x x x… .  The 

true value (unknown) of the measured quantity is μ  (mu) and is estimated by the arithmetic 

mean x  where 

 1 2 1

n

k
n k

x
x x xx

n n
=+ + +

= =
∑"  (2.1) 

The arithmetic mean is regarded as the best estimate or most probable value.  A correction v 

having the same magnitude as an error but the opposite sign is defined as 

 k kv x x= −  

Since these corrections relate to the measurements and arithmetic mean, they could be called 

apparent corrections and hence according to our definition of corrections and errors, apparent 

errors −  are defined as v

 k kv x x− = −  

In a similar manner, we may define true errors ε  (epsilon) as 

 k kxε μ= −  

These relationships may be expressed as 

  
measurement  + residual = best estimate
measurement  best estimate = apparent error
measurement  true value = true error

−
−
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True errors are unknown and are approximated by apparent errors.  The closer the best 

estimate (or most probable value) approaches the true value, the closer the apparent error 

approaches the true error.  The laws defining the nature and behaviour of true errors were 

derived from practical axioms deduced from the nature of apparent errors and hence any 

theory of errors may also be regarded as a theory of corrections (or residuals) and the 

distinction between true errors and apparent errors is ignored for all practical purposes. 

 

The following sections contain simple examples of least squares processes, the mean, the 

weighted mean, line of best fit (linear regression) and polynomial curve fitting.  In each case, 

Gauss' least squares principle: "... the most probable system of values of the quantities ... will 

be that in which the sum of the squares of the differences between the actually observed and 

computed values multiplied by numbers that measure the degree of precision, is a minimum." 

will be employed to determine equations or systems of equations that may be regarded as least 

squares solutions to the problems.  Furthermore, it is assumed that all measurements are free 

of mistakes, constant errors and systematic errors and "contain" only random errors and that 

the precision of the measurements is known a priori (Latin a priori from what is before).  

Solutions to some of the examples are provided as MATLAB script files (.m files). 

 

2.2. The Mean 

It is well known practice that when a single quantity is measured a number of times the 

arithmetic mean is taken as the best estimate of the measured quantity.  Few people realise 

that when they adopt this practice they are employing Gauss' least squares principle. 

 

Consider a series of measurements 1 2 3, , , , nx x x x…  of a quantity and denote the best 

estimate of this quantity as p.  According to our general definition of measurements and 

corrections we may write:  measurement + correction (or residual) = best estimate or 

 1 1 2 2 3 3, , , , n nx v p x v p x v p x v+ = + = + = + =" p  

These equations can be rearranged as 

  1 1 2 2 3 3, , , , n nv p x v p x v p x v p x= − = − = − = −"

Now if all the measurements can be regarded as having equal precision we may state the least 

squares principle as 
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The best estimate p is that value which makes the sum of the squares 

of the residuals a minimum. 

 

We may define a least squares function ϕ  (phi) as 

 2

1

 the sum of the squares of the residuals
n

k
k

vϕ
=

= = ∑  (2.2) 

or  ( ) ( ) (2 22
1 2

1

n

k n
k

v p x p x p xϕ
=

= = − + − + + −∑ " )2

We say that ϕ  is a function of p, the single parameter or variable in this equation.  The 

minimum value of the function (i.e. making the sum of squares of residuals a minimum) can 

be found by equating the derivative d
dp
ϕ  to zero, i.e., 

  is a minimum when 0d
dp
ϕϕ =  

and ( ) ( ) ( )1 22 2 2 n
d p x p x p x
dp

0ϕ
= − + − + + − ="  

Cancelling the 2's and rearranging gives the best estimate p as the arithmetic mean. 

 1 2 3 1

n

k
n k

x
x x x xp

n n
=+ + + +

= =
∑"  (2.3) 

Hence, the arithmetic mean of a series of measurements is the best estimate according to 

Gauss' least squares principle. 

 

2.3. The Weighted Mean 

Before demonstrating that the weighted mean of a set of observations is the result of a least 

squares process, some discussion of the term weight and its connection with precision is 

required. 
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2.3.1. Measures of Precision of a Finite Population 

In every least squares process it is assumed that the precision of measurements is known.  The 

precision is a measure of the dispersion (or spread) of a number of measurements from their 

mean (or average) value.  A common statistical measure of precision is the variance 2σ  and 

the positive square root of the variance is the standard deviation σ .  Equations for the 

variance and standard deviation differ depending on whether the population of measurements 

is finite or infinite and a population is a potential set of quantities that we want to make 

inference about based on a sample from that population. 

 

Following Deakin and Kildea (1999), consider a finite population, such as the examination 

marks  of a group of N students in a single subject.  Since we have complete information 

about the population, i.e., its size is known, the mean 

km

μ , the variance 2σ  and the standard 

deviation σ  of the finite population are 

 1

N

k
k

m

N
μ ==

∑
 (2.4) 

 
( )2

2 1

N

k
k

m

N

μ
σ =

−
=

∑
 (2.5) 

 
( )2

1

N

k
k

m

N

μ
σ =

−
=

∑
 (2.6) 

Note that the variance 2σ  is the average squared difference of a member of the population  

from the population mean 

km

μ .  The mean, variance and standard deviation are known as 

population parameters. 

2.3.2. Estimates of Precision of Samples of an Infinite Population 

Consider surveying measurements, drawn from infinite populations with the attendant 

difficulties of estimation since population averages can never be known.  In such cases we are 

usually dealing with small samples of measurements of size n and we can only obtain 

estimates of the unknown population parameters μ , 2σ  and σ .  For a sample of n 
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measurements 1 2 3, , , , nx x x x…  from an infinite population, estimates of the mean, variance 

and standard deviation, denoted by x , 2
xs  and xs  are 

 
1

1 n

k
k

x x
n =

= ∑  (2.7) 

 ( 22

1

1
1

n

x k
k

s x
n =

=
− ∑ )x−  (2.8) 

 ( )2

1

1
1

n

x k
k

s x
n =

=
− ∑ x−  (2.9) 

Note the divisor  (known as the degrees of freedom) in equations for the estimates of 

variance and standard deviation.  This ensures that 

1n −
2
xs  is an unbiased estimate of the 

population variance 2σ , but does not ensure that xs  is an unbiased estimate of the population 

standard deviation σ ; the action of "taking a square-root" changes the property of 

unbiasedness.  This is more an accident of mathematics rather than a cause of faulty 

estimation but it is not well appreciated in general.  Deakin and Kildea (1999, p. 76) show that 

an unbiased estimator xs∗  of the population standard deviation σ  is given by 

 ( )2

1

1 n

x k
kn

s x
c

∗

=

= −∑ x  (2.10) 

Values of  are given in Table 2.1 nc

n 2 3 4 5 10 15 20 30 90 

n-1 1 2 3 4 9 14 19 29 89 

nc  0.64 1.57 2.55 3.53 8.51 13.51 18.51 28.50 88.50 

 

Table 2.1  Values of divisor  for unbiased estimation of nc σ  

 

In these notes, it is always assumed that the terms mean, variance and standard deviation refer 

to estimates of population values. 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–8 



RMIT University Geospatial Science 

2.3.3. Relationship between Weights and Estimates of Variance 

Another measure of precision, often used in least squares applications is weight w and the 

weight of an observation (or measurement) is defined as being inversely proportional to the 

variance 

 2

1
k

k

w
s

∝  (2.11) 

or 
2
0
2k
k

w
s
σ

=  (2.12) 

2
0σ  is a constant of proportionality known as the reference variance or variance factor.  This is 

the classical definition of weight and if an observation has unit weight ( )1kw =  its variance 

equals 2
0σ , hence the reference variance is sometimes called the variance of an observation of 

unit weight; a term often encountered in older surveying texts.  In this definition of weight, 

there is an assumption that the measurements are uncorrelated (a statistical term relating to the 

dependence between measurements, see section 2.5).  In cases where measurements are 

correlated, weights are not an adequate means of describing relative precisions. 

 

As an example of the connection between weights and standard deviations consider three 

uncorrelated (i.e., independent) observations of a particular distance, where each observation 

is the mean of several measurements and standard deviations of each observation have been 

determined from the measurements 

 

 observation 1 136.225 m (st. dev. 0.010 m) 

 observation 2 136.233 m (st. dev. 0.032 m) 

 observation 3 136.218 m (st. dev. 0.024 m) 

 

Since the weight is inversely proportional to the variance, the observation with the smallest 

weight will have the largest variance (standard deviation squared).  For convenience, this 

observation is given unit weight i.e., 2 1w =  and the other observations (with smaller 

variances) will have higher weight.  Hence from (2.12) 

 
( )

( )
2

220
2 021    and   0.032

0.032
w σ σ= = =  
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The weights of the three observations are then 

 

( )
( )
( )
( )
( )
( )

2

1 2

2

2 2

2

3 2

0.032
10.24

0.010

0.032
1

0.032

0.032
1.78

0.024

w

w

w

= =

= =

= =

 

Weights are often assigned to observations using "other information".  Say for example, a 

distance is measured three times and a mean value determined.  If two other determinations of 

the distance are from the means of six and four measurements respectively, the weights of the 

three observations may simply be assigned the values 3, 6 and 4.  This assignment of weights 

is a very crude reflection of the (likely) relative precisions of the observations since it is 

known that to double the precision of a mean of a set of measurements, we must quadruple 

the number of measurements taken (Deakin and Kildea, 1999, p. 76). 

2.3.4. Derivation of Equation for the Weighted Mean 

Consider a set of measurements of a quantity as 1 2 3, , , , nx x x x…  each having weight 

 and denote the best estimate of this quantity as q.  According to our general 

definition of measurements and corrections we may write: 

1 2 3, , , , nw w w w…

measurement + correction (or residual) = best estimate 

or 1 1 2 2 3 3, , , , n nx v q x v q x v q x v q+ = + = + = + ="  

These equations can be rearranged as 

  1 1 2 2 3 3, , , , n nv q x v q x v q x v q x= − = − = − = −"

Now each measurement has a weight reflecting relative precision and we may state the least 

squares principle as 

The best estimate q is that value which makes the sum of the squares 

of the residuals, multiplied by their weights, a minimum. 

We may define a least squares function ϕ  (phi) as 

  (2.13) 2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑
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or  ( ) ( ) (2 22
1 1 2 2

1

n

k k n n
k

w v w q x w q x w q xϕ
=

= = − + − + + −∑ " )2

We say that ϕ  is a function of q, the single parameter or variable in this equation.  The 

minimum value of the function (i.e., making the sum of the weighted squared residuals a 

minimum) can be found by equating the derivative d
dq
ϕ  to zero, i.e., 

  is a minimum when 0d
dq
ϕϕ =  

and ( ) ( ) ( )1 1 2 22 2 2 n n
d w q x w q x w q x
dq

0ϕ
= − + − + + −" =  

Cancelling the 2's and expanding gives 

  1 1 1 2 2 2 0n n nw q w x w q w x w q w x− + − + + − ="

Rearranging gives the weighted arithmetic mean q 

 1 1 2 2 1

1 2

1

n

k k
n n k

n
n

k
k

w x
w x w x w xq

w w w w

=

=

+ + +
=

+ + +

∑
=

∑
"
"

 (2.14) 

Hence, the weighted arithmetic mean of a series of measurements kx  each having weight  

is the best estimate according to Gauss' least squares principle. 

kw

 

It should be noted that the equation for the weighted mean (2.14) is valid only for 

measurements that are statistically independent.  If observations are dependent, then a 

measure of the dependence between the measurements, known as covariance, must be taken 

into account.  A more detailed discussion of weights, variances and covariances is given in 

later sections of these notes. 
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2.4. Line of Best Fit 

 

 

y

C

y = m x + c

1

2 3

4

5

•

• •

•

•

x

 

 

Figure 2.1  Line of Best Fit through data points 1 to 5 

 

The line of best fit shown in the Figure 2.1 has the equation y m x c= +  where m is the slope 

of the line 2 1

2 1

tan y ym
x x

θ
⎛ ⎞−

= =⎜ −⎝ ⎠
⎟  and c is the intercept of the line on the y axis. 

m and c are the parameters and the data points are assumed to accord with the mathematical 

model .  Obviously, only two points are required to define a straight line and so 

three of the five points in Figure 2.1 are 

y m x c= +

redundant measurements (or observations).  In this 

example the x,y coordinate pairs of each data point are considered as indirect measurements of 

the parameters m and c of the mathematical model. 

 

To estimate (or compute) values for m and c, pairs of points in all combinations (ten in all) 

could be used to obtain average values of the parameters; or perhaps just two points selected 

as representative could be used to determine m and c. 
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A better way is to determine a line such that it passes as close as possible to all the data 

points.  Such a line is known as a Line of Best Fit and is obtained (visually) by minimising the 

differences between the line and the data points.  No account is made of the "sign" of these 

differences, which can be considered as corrections to the measurements or residuals.  The 

Line of Best Fit could also be defined as the result of a least squares process that determines 

estimates of the parameters m and c such that those values will make the sum of the squares of 

the residuals, multiplied by their weights, a minimum.  Two examples will be considered, the 

first with all measurements considered as having equal precisions, i.e., all weights of equal 

value, and the second, measurements having different precisions, i.e., unequal weights. 

 

2.4.1. Line of Best Fit (equal weights) 

In Figure 2.1 there are five data points whose x,y coordinates (scaled from the diagram in 

mm's) are 

 

Point
1 40.0 24.0
2 15.0 24.0
3 10.0 12.0
4 38.0 15.0
5 67.0 30.0

x y
− −
− −

−
 

Table 2.2   Coordinates of data points (mm's) shown in Figure 2.1 

 

y m x cAssume that the data points accord with the mathematical model = +  and each 

measurement has equal precision.  Furthermore, assume that the residuals are associated with 

the y values only, which leads to an observation equation of the form 

 k k ky v m x c+ = +  (2.15) 

By adopting this observation equation we are actually saying that the measurements (the x,y 

coordinates) don't exactly fit the mathematical model, i.e., there are inconsistencies between 

the model and the actual measurements, and these inconsistencies (in both x and y 

measurements) are grouped together as residuals  and simply added to the left-hand-side of 

the mathematical model.  

kv

This is simply a convenience.  We could write an observation 

equation of the form 
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 ( )k kk y k xy v m x v c+ = + +  

kxv ,  are residuals associated with the x and y coordinates of the k
kyv th point.  Observation 

equations of this form require more complicated least squares solutions and are not considered 

in this elementary section. 

 

Equations (2.15) can be re-written as residual equations of the form 

 k kv m x c yk= + −  (2.16) 

The distinction here between observation equations and residual equations is simply that 

residual equations have only residuals on the left of the equals sign.  Rearranging observation 

equations into residual equations is an interim step to simplify the function ϕ  = sum of 

squares of residuals. 

 

Since all observations are of equal precision (equal weights), the least squares function to be 

minimised is 

 2

1

 the sum of the squares of the residuals
n

k
k

vϕ
=

= = ∑  

or  
5

2 2 2
1 1 2 2 5

1

( ) ( ) .... ( )k
k

v m x c y m x c y m x c yϕ
=

= = + − + + − + + + −∑ 2
5

ϕ  is a function of the u = 2 "unknown" parameters m and c and so to minimise the sum of 

squares of residuals, the partial derivatives 
m

∂ϕ
∂

 and 
c

∂ϕ
∂

 are equated to zero. 

 
1 1 1 2 2 2 5 5 5

1 1 2 2 5 5

2( )( ) 2( )( ) ... 2( )( ) 0

2( )(1) 2( )(1) ... 2( )(1) 0

m x c y x m x c y x m x c y x
m

m x c y m x c y m x c y
c

∂φ
∂
∂φ
∂

= + − + + − + + + − =

= + − + + − + + + − =
  

Cancelling the 2's, simplifying and re-arranging gives two normal equations of the form 

  (2.17) 

2

1 1 1

1 1

n n n

k k
k k k

n

k k
k k

m x c x x y

m x c n y

= = =

= =

+ =

+ =

∑ ∑ ∑

∑ ∑

k k

n
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The normal equations can be expressed in matrix form as 

 
2

k kk k

kk

x yx x m
yx n c

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

∑∑ ∑
∑∑

 (2.18) 

or =N x t  (2.19) 

Matrix algebra is a powerful mathematical tool that simplifies the theory associated with least 

squares.  The student should become familiar with the terminology and proficient with the 

algebra.  Appendix A contains useful information relating to matrix algebra. 

  is the (  11 12

21 22

n n
n n

⎡
= ⎢

⎣ ⎦
N ⎤

⎥ ),u u normal equation coefficient matrix

 1

2

x
x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
x  is the (  ),1u vector of parameters (or "unknowns"), and 

  is the (  1

2

t
t

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
t ),1u vector of numeric terms. 

The solution of the normal equations for the vector of parameters is 

  (2.20) 1−=x N t

In this example (two equations in two unknowns) the matrix inverse 1−N  is easily obtained 

(see Appendix A 4.8) and the solution of (2.20) is given as 

 1 22

2 2111 22 12 21

1
( )

12 1

11 2

x n n t
x n n tn n n n

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x  (2.21) 

From the data given in Table 2.2, the normal equations are 

  
7858.00 60.00 3780.00

60.00 5.00 15.00
m
c

⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

and the solutions for the best estimates of the parameters m and c are 

 
( ) ( ) ( ) ( )

5.00 60.00 0.5547771
60.00 7858.00 9.6573277858.00 5.00 60.00 60.00

m
c

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Substitution of the best estimates of the parameters m and c into the residual equations 

 gives the residuals (mm's) as k kv m x c y= + − k
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1

2

3

4

5

v
v
v
v
v

=
=
=
=
=

7.8
6.0
7.9
3.6
2.5

−

−
−

 

 

2.4.2. Line of Best Fit (unequal weights) 

Consider again the Line of best Fit shown in Figure 2.1 but this time the x,y coordinate pairs 

are weighted, i.e., some of the data points are considered to have more precise coordinates 

than others.  Table 2.3 shows the x,y coordinates (scaled from the diagram in mm's) with 

weights. 

 

Point weight 
1 40.0 24.0 2
2 15.0 24.0 5
3 10.0 12.0 7
4 38.0 15.0 3
5 67.0 30.0 3

x y w
− −
− −

−
 

Table 2.3   Coordinates (mm) and weights of data points shown in Figure 2.1 

 

Similarly to before, a residual equation of the form given by (2.16) can be written for each 

observation but this time a weight  is associated with each equation and the least squares 

function to be minimised is 

kw

  2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

or  
5

2 2 2
1 1 1 2 2 2 5 5 5

1

( ) ( ) .... ( )k k
k

w v w m x c y w m x c y w m x c yϕ
=

= = + − + + − + + + −∑ 2

ϕ  is a function of the u = 2 "unknown" parameters m and c and so to minimise ϕ  the partial 

derivatives 
m

∂ϕ
∂

 and 
c

∂ϕ
∂

 are equated to zero. 
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1 1 1 1 2 2 2 2 5 5 5 5

1 1 1 2 2 2 5 5 5

2 ( )( ) 2 ( )( ) ... 2 ( )( ) 0

2 ( )(1) 2 ( )(1) ... 2 ( )(1) 0

w m x c y x w m x c y x w m x c y x
m

w m x c y w m x c y w m x c y
c

∂φ
∂
∂φ
∂

= + − + + − + + + − =

= + − + + − + + + − =
  

Cancelling the 2's simplifying and re-arranging gives two normal equations of the form 

  

2

1 1 1

1 1 1

n n n

k k k k k k k
k k k

n n n

k k k k k
k k k

m w x c w x w x y

m w x c w w y

= = =

= = =

+ =

+ =

∑ ∑ ∑

∑ ∑ ∑

The normal equations expressed in matrix form =Nx t  are 

 
2

k k kk k k k

k kk k k

w x yw x w x m
w yw x w c

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

∑∑ ∑
∑∑ ∑

 

Substituting the data in Table 2.3, the normal equations are 

  
22824.00 230.00 10620.00

230.00 20.00 117.00
m
c

⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢ −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

The solution for the best estimates of the parameters m and c is found in exactly the same 

manner as before (see section 2.4.1) 

 
0.592968

12.669131
m
c

=
= −

 

Substitution of m and c into the residual equations k kv m x c yk= + −  gives the residuals 

(mm's) as 

 

1

2

3

4

5

v
v
v
v
v

=
=
=
=
=

12.4
2.4
5.3
5.1
2.9

−

−
−

 

Comparing these residuals with those from the Line of Best Fit (equal weights), shows that 

the line has been pulled closer to points 2 and 3, i.e.; the points having largest weight. 
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2.5. Variances, Covariances, Cofactors and Weights 

Some of the information in this section has been introduced in previously in section 2.3 The 

Weighted Mean and is re-stated here in the context of developing general matrix expressions 

for variances, covariances, cofactors and weights of sets or arrays of measurements. 

 

In surveying applications, we may regard a measurement x as a possible value of a continuous 

random variable drawn from an infinite population.  To model these populations, and thus 

estimate the quality of the measurements, probability density functions have been introduced.  

In surveying, Normal (Gaussian) probability density functions are the usual model.  A 

probability density function is a non-negative function where the area under the curve is one.  

For  and  the values of ( ) 0f x ≥ ( ) 1f x dx
+∞

−∞
=∫ ( )f x  are not probabilities.  The probability a 

member of the population lies in the interval a to b is ( )
b

a
f x dx∫ .  The population mean μ , 

population variance 2
xσ  and the family of Normal probability density functions are given by 

Kreyszig (1970) as 

 ( )x x f x dxμ
+∞

−∞
= ∫  (2.22) 

 ( )22 ( )x xx f x dxσ μ
+∞

−∞
= −∫  (2.23) 

 

2
1
21( ; , )

2

x

x

x

x x
x

f x e
μ

σμ σ
σ π

⎛ ⎞−
− ⎜ ⎟

⎝ ⎠=  (2.24) 

Since the population is infinite, means and variances are never known, but may be estimated 

from a sample of size n.  The sample mean x  and sample variance 2
xs , are unbiased estimates 

of the population mean xμ  and population variance 2
xσ  

 
1

1 n

k
k

x x
n =

= ∑  (2.25) 

 ( 22

1

1
1

n

x k
k

s x
n =

=
− ∑ )x−  (2.26) 
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The sample standard deviation xs  is the positive square root of the sample variance and is a 

measure of the precision (or dispersion) of the measurements about the mean x . 

 

In least squares applications, an observation may be the mean of a number measurements or a 

single measurement.  In either case, it is assumed to be from an infinite population of 

measurements having a certain (population) standard deviation and that an estimate this 

standard deviation is known. 

 

When two or more observations are jointly used in a least squares solution then the 

interdependence of these observations must be considered.  Two measures of this 

interdependence are covariance and correlation.  For two random variables x and y with a 

joint probability density function ( , )f x y  the covariance x yσ  is 

 ( ) ( ) ( , )x y x yx y f x y dx dyσ μ μ
+∞ +∞

−∞ −∞
= − −∫ ∫  (2.27) 

and the correlation coefficient ρ  is given by 

 x y
x y

x y

σ
ρ

σ σ
=  (2.28) 

The correlation coefficient ρ  will vary between 1± .  If 0x yρ =  random variables x and y 

are said to be uncorrelated and, if 1x yρ = ± , x and y are linked by a linear relationship 

(Kreyszig 1970, pp.335-9).  Correlation and statistical dependence are not the same, although 

both concepts are used synonymously.  It can be shown that the covariance x yσ  is always 

zero when the random variables are statistically independent (Kreyszig 1970, p.137-9).  

Unfortunately, the reverse is not true in general.  Zero covariance does not necessarily imply 

statistical independence.  Nevertheless, for multivariate Normal probability density functions, 

zero covariance (no correlation) is a sufficient condition for statistical independence (Mikhail 

1976, p.19). 

 

The sample covariance x ys  between n pairs of values 1 1( , )x y , 2 2( , )x y , ..., ( , )n nx y  with 

means x  and y  is (Mikhail 1976, p.43) 

 
1

1 ( )(
1

n

x y k k
k

s x x
n =

= −
− ∑ )y y−  (2.29) 
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Variances and covariances of observations can be conveniently represented using matrices.  

For n observations 1 2 3, , , ..., nx x x x  with variances 2 2 2
1 2 3, , , ..., n

2σ σ σ σ  and covariances 

12 13, , ...σ σ  the variance-covariance matrix Σ  is defined as 

 

2
1 12 13 1

2
21 2 23 2

2
1 2 3

...

...
.... .... .... ....

...

n

n

n n n n n

σ σ σ σ
σ σ σ σ

σ σ σ σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  (2.30) 

Note that the variance-covariance matrix Σ  is symmetric since in general k j j kσ σ= . 

 

In practical applications of least squares, population variances and covariances are unknown 

and are replaced by estimates , , … ,  and , , … or by other numbers 

representing relative variances and covariances.  These are known as 

2
1s

2
2s 2

ns 12s 13s

cofactors and the 

cofactor matrix Q, which is symmetric, is defined as 

 

11 12 13 1

21 22 23 2

1 2 3

...

...
.... .... .... ....

...

n

n

n n n n n

q q q q
q q q q

q q q q

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q  (2.31) 

The relationship between variance-covariance matrices and cofactor matrices is 

  (2.32) 2
0σ= QΣ

2
0σ  is a scalar quantity known as the variance factor.  The variance factor is also known as the 

reference variance and the variance of an observation of unit weight (see section 2.3 for 

further discussion on this subject). 

 

The inverse of the cofactor matrix Q is the weight matrix W. 

 1−=W Q  (2.33) 

Note that since Q is symmetric, its inverse W is also symmetric.  In the case of uncorrelated 

observations, the variance-covariance matrix Σ  and the cofactor matrix Q are both diagonal 

matrices (see Appendix A) and the weight of an observation w is a value that is inversely 

proportional to the estimate of the variance i.e., 
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 2
0kk kkw qσ=    or   2 2

0kk kkw σ= s  (2.34) 

For uncorrelated observations, the off-diagonal terms will be zero and the double subscripts 

may be replaced by single subscripts; equation (2.34) becomes 

 2 2
0kw σ= ks  (2.35) 

This is the classical definition of a weight where 2
0σ  is a constant of proportionality. 

 

Note: The concept of weights has been extensively used in classical least squares theory but 

is limited in its definition to the case of independent (or uncorrelated) observations.  

(Mikhail 1976, pp.64-65 and Mikhail and Gracie 1981, pp.66-68). 

 

2.6. Matrices and Simple Least Squares Problems 

Matrix algebra is a powerful mathematical tool that can be employed to develop standard 

solutions to least squares problems.  The previous examples of the Line of Best Fit will be 

used to show the development of standard matrix equations that can be used for any least 

squares solution. 

 

In previous developments, we have used a least squares function ϕ  as meaning either the sum 

of squares of residuals or the sum of squares of residuals multiplied by weights. 

 

In the Line of Best Fit (equal weights), we used the least squares function  

 2

1

 the sum of the squares of the residuals
n

k
k

vϕ
=

= = ∑  

If the residuals  are elements of a (column) vector v, the function kv ϕ  can be written as the 

matrix product 

  [ ]

1

22
1 2

1

n
T

k n
k

n

v
v

v v v v

v

ϕ
=

⎡ ⎤
⎢ ⎥
⎢ ⎥= = =
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ v v"
#
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In the Line of Best Fit (unequal weights), we used the least squares function  

  2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

If the residuals  are elements of a (column) vector v and the weights are the diagonal 

elements of a diagonal weight matrix W, the function 

kv

ϕ  can be written as the matrix product 

  [ ]

1 1

2 22
1 2

1

0 0 0
0 0 0
0 0 0
0 0 0

n
T

k k n
k

n n

w v
w v

w v v v v

w v

ϕ
=

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ v Wv"
% #

Note that in this example the weight matrix W represents a set of uncorrelated measurements. 

 

In general, we may write least squares function as a matrix equation 

  (2.36) Tϕ = v Wv

Note that replacing W with the identity matrix I gives the function for the case of equal 

weights and that for n observations, the order of v is (n,1), the order of W is (n,n) and the 

function  is a scalar quantity (a single number). Tϕ = v Wv

 

yIn both examples of the Line of Best Fit an observation equation k k kv m x c+ = +

k

1

2

3

4

5

 was used 

that if re-arranged as  yields five equations for the coordinate pairs k kv m x c y− + = −

 

1 1

2 2

3 3

4 4

5 5

v mx c y
v mx c y
v mx c y
v mx c y
v mx c y

− − = −
− − = −
− − = −
− − = −
− − = −

 

Note that these re-arranged observation equations have all the unknown quantities v, m and c 

on the left of the equals sign and all the known quantities on the right. 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–22 



RMIT University Geospatial Science 

These equations can be written in matrix form 

  

1 1

2 2

5 5

1
1

1

v x
v x ym

c
v x y

− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

# # # #

1

2

5

y

and written symbolically as 

 + =v Bx f  (2.37) 

where = −f d l  (2.38) 

If n is the number of observations (equal to the number of equations) and u is the number of 

unknown parameters 

 v is an (n,1) vector of residuals, 

 B is an (n,u) matrix of coefficients, 

 x is the (u,1) vector of unknown parameters, 

 f is the (n,1) vector of numeric terms derived from the observations, 

 d is an (n,1) vector of constants and 

 l is the (n,1) vector of observations. 

Note that in many least squares problems the vector d is zero. 

 

By substituting (2.37) into (2.36), we can obtain an expression for the least squares function 

  
( ) ( )

( )( ) ( )

( ) ( )

T

T

TT

T T T

ϕ =

= − −

= − −

= − −

v Wv

f Bx W f Bx

f Bx W f Bx

f x B W f Bx

and multiplication, observing the rule of matrix algebra gives 

  (2.39) T T T T T Tϕ = − − +f Wf f WBx x B Wf x B WBx

Since ϕ  is a scalar (a number), the four terms on the right-hand-side of (2.39) are also scalars.  

Furthermore, since the transpose of a scalar is equal to itself, the second and third terms are 

equal , remembering that W is symmetric hence , giving ( )TT T=f WBx x B WfT T=W W

 ( )2T T T Tϕ = − +f Wf f WBx x B WB x  (2.40) 
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In equation (2.40) all matrices and vectors are numerical constants except x, the vector of 

unknown parameters, therefore for the least squares function ϕ  to be a minimum, its partial 

derivative with respect to each element in vector x must be equated to zero, i.e., ϕ  will be a 

minimum when Tϕ∂
=

∂
0

x
.  The first term of (2.40) does not contain x so its derivative is 

automatically zero and the second and third terms are bilinear and quadratic forms 

respectively and their derivatives are given in Appendix A, hence ϕ  will be a minimum when 

 ( )2 2T T T Tϕ∂
= − + =

∂
f WB x B WB 0

x
 

Cancelling the 2's, re-arranging and transposing gives a set of normal equations 

 ( )T =B WB x B WfT  (2.41) 

Equation (2.41) is often given in the form 

 =Nx t  (2.42) 

where   is a (u,u) coefficient matrix (the normal equation coefficient 

matrix), 

T=N B WB

 x is the (u,1) vector of unknown parameters and 

  is a (u,1) vector of numeric terms. T=t B Wf

 

The solution for the vector of parameters x is given by 

 1−=x N t  (2.43) 

After solving for the vector x, the residuals are obtained from 

 = −v f Bx  (2.44) 

and the vector of "adjusted" or estimated observations  is l̂

 ˆ = +l l v  (2.45) 

The "hat" symbol (^) is used to denote quantities that result from a least squares process.  

Such quantities are often called adjusted quantities or least squares estimates. 

 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–24 



RMIT University Geospatial Science 

 

These equations are the standard matrix solution for 

 

least squares adjustment of indirect observations. 

 

The name "least squares adjustment of indirect observations", adopted by Mikhail (1976) and 

Mikhail & Gracie (1981), recognises the fact that each observation is an indirect measurement 

of the unknown parameters.  This is the most common technique employed in surveying and 

geodesy and is described by various names, such as 

 parametric least squares 

 least squares adjustment by observation equations 

 least squares adjustment by residual equations 

 

The technique of least squares adjustment of indirect observations has the following 

characteristics 

 

• A mathematical model (equation) links observations, residuals (corrections) and 

unknown parameters. 

• For n observations, there is a minimum number  required to determine the u 

unknown parameters.  In this case 

0n

0n u=  and the number of redundant observations is 

. 0r n n= −

• An equation can be written for each observation, i.e., there are n observation 

equations.  These equations can be represented in a standard matrix form; see equation 

(2.37), representing n equations in u unknowns and solutions for the unknown 

parameters, residuals and adjusted observations obtained from equations (2.41) to 

(2.45). 

 

The popularity of this technique of adjustment is due to its easy adaptability to computer-

programmed solutions.  As an example, the following MATLAB program best_fit_line.m 

reads a text file containing coordinate pairs (measurements) x and y and a weight w (a 

measure of precision associated with each coordinate pair) and computes the parameters m 

and c of a line of best fit y mx c= + . 
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MATLAB program best_fit_line 
 

 
function best_fit_line 
% 
% BEST_FIT_LINE reads an ASCII textfile containing coordinate pairs (x,y) 
%   and weights (w) associated with each pair and computes the parameters 
%   m and c of the line of best fit y = mx + c using the least squares 
%   principle.  Results are written to a textfile having the same path and  
%   name as the data file but with the extension ".out" 
 
%============================================================================ 
% Function:  best_fit_line 
% 
% Author: 
%  Rod Deakin,  
%  Department of Geospatial Science, RMIT University, 
%  GPO Box 2476V, MELBOURNE VIC 3001 
%  AUSTRALIA 
%  email: rod.deakin@rmit.edu.au 
% 
% Date: 
%  Version 1.0  18 March 2003 
% 
% Remarks: 
%  This function reads numeric data from a textfile containing coordinate 
%  pairs (x,y) and weights (w) associated with each pair and computes the 
%  parameters m and c of a line of best fit y = mx + c using the least 
%  squares principle.  Results are written to a textfile having the same 
%  path and name as the data file but with the extension ".out" 
% 
% Arrays: 
%  B       - (n,u) coeff matrix of observation equation v + Bx = f 
%  f       - (n,1) vector of numeric terms 
%  N       - (u,u) coefficient matrix of Normal equations Nx = t 
%  Ninv    - (u,u) inverse of N 
%  t       - (u,1) vector of numeric terms of Normal equations Nx = t 
%  v       - (n,1) vector of residuals 
%  W       - (n,n) weight matrix 
%  weight  - (n,1) vector of weights 
%  x       - (u,1) vector of solutions 
%  x_coord - (n,1) vector of x coordinates  
%  y_coord - (n,1) vector of y coordinates  
%   
% 
% Variables 
%  n       - number of equations 
%  u       - number of unknowns 
% 
% References: 
%  Notes on Least Squares (2003), Department of Geospatial Science, RMIT 
%      University, 2003 
% 
%============================================================================ 
 
 
%------------------------------------------------------------------------- 
% 1. Call the User Interface (UI) to choose the input data file name 
% 2. Concatenate strings to give the path and file name of the input file 
% 3. Strip off the extension from the file name to give the rootName 
% 4. Add extension ".out" to rootName to give the output filename 
% 5. Concatenate strings to give the path and file name of the output file 
%------------------------------------------------------------------------- 
filepath = strcat('c:\temp\','*.dat'); 
[infilename,inpathname] = uigetfile(filepath); 
infilepath = strcat(inpathname,infilename); 
rootName   = strtok(infilename,'.'); 

© 2005, R.E. Deakin Notes on Least Squares (2005) 2–26 



RMIT University Geospatial Science 

MATLAB program best_fit_line 
 

outfilename = strcat(rootName,'.out'); 
outfilepath = strcat(inpathname,outfilename); 
 
%---------------------------------------------------------- 
% 1. Load the data into an array whose name is the rootName 
% 2. set fileTemp = rootName 
% 3. Copy columns of data into individual arrays 
%---------------------------------------------------------- 
load(infilepath); 
fileTemp = eval(rootName); 
x_coord = fileTemp(:,1); 
y_coord = fileTemp(:,2); 
weight  = fileTemp(:,3); 
 
% determine the number of equations 
n = length(x_coord); 
 
% set the number of unknowns 
u = 2; 
 
% set the elements of the weight matrix W 
W = zeros(n,n); 
for k = 1:n 
  W(k,k) = weight(k); 
end   
 
% form the coefficient matrix B of the observation equations 
B = zeros(n,u); 
for k = 1:n 
  B(k,1) = -x_coord(k); 
  B(k,2) = -1; 
end   
 
% for the vector of numeric terms f 
f = zeros(n,1); 
for k = 1:n 
  f(k,1) = -y_coord(k); 
end   
 
% form the normal equation coefficient matrix N 
N = B'*W*B; 
 
% form the vector of numeric terms t 
t = B'*W*f; 
 
% solve the system Nx = t for the unknown parameters x 
Ninv = inv(N); 
x = Ninv*t; 
 
% compute residuals 
v = f - (B*x); 
 
% open the output file print the data 
fidout  = fopen(outfilepath,'wt'); 
 
fprintf(fidout,'\n\nLine of Best Fit Least Squares Solution'); 
 
fprintf(fidout,'\n\nInput Data'); 
fprintf(fidout,'\n     x(k)       y(k)     weight w(k)'); 
for k = 1:n 
  fprintf(fidout,'\n%10.4f %10.4f %10.4f',x_coord(k),y_coord(k),weight(k)); 
end   
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MATLAB program best_fit_line 
 

fprintf(fidout,'\n\nCoefficient matrix B of observation equations v + Bx = f'); 
for j = 1:n 
  fprintf(fidout,'\n'); 
  for k = 1:u 
    fprintf(fidout,'%10.4f',B(j,k)); 
  end   
end   
 
fprintf(fidout,'\n\nVector of numeric terms f of observation equations v + Bx = 
f'); 
for k = 1:n 
  fprintf(fidout,'\n%10.4f',f(k,1)); 
end   
 
fprintf(fidout,'\n\nCoefficient matrix N of Normal equations Nx = t'); 
for j = 1:u 
  fprintf(fidout,'\n'); 
  for k = 1:u 
    fprintf(fidout,'%12.4f',N(j,k)); 
  end   
end   
 
fprintf(fidout,'\n\nVector of numeric terms t of Normal equations Nx = t'); 
for k = 1:u 
  fprintf(fidout,'\n%10.4f',t(k,1)); 
end   
 
fprintf(fidout,'\n\nInverse of Normal equation coefficient matrix'); 
for j = 1:u 
  fprintf(fidout,'\n'); 
  for k = 1:u 
    fprintf(fidout,'%16.4e',Ninv(j,k)); 
  end   
end   
 
fprintf(fidout,'\n\nVector of solutions x'); 
for k = 1:u 
  fprintf(fidout,'\n%10.4f',x(k,1)); 
end   
 
fprintf(fidout,'\n\nVector of residuals v'); 
for k = 1:n 
  fprintf(fidout,'\n%10.4f',v(k,1)); 
end 
 
fprintf(fidout,'\n\n'); 
 
% close the output file 
fclose(fidout); 
 
 

MATLAB program best_fit_line 
 

Data file c:\Temp\line_data.dat 
 
 
% data file for function "best_fit_line.m" 
%   x       y      w 
  -40.0  -24.0     2 
  -15.0  -24.0     5 
   10.0  -12.0     7 
   38.0   15.0     3 
   67.0   30.0     3 
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MATLAB program best_fit_line 
 

 

Running the program from the MATLAB command window prompt >> opens up a standard 

Microsoft Windows file selection window in the directory c:\Temp.  Select the appropriate 

data file (in this example: line_data.dat) by double clicking with the mouse and the program 

reads the data file, computes the solutions and writes the output data to the file 
c:\Temp\line_data.out   
 

MATLAB command window 
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MATLAB program best_fit_line 
 

Output file c:\Temp\line_data.out 
 
 
Line of Best Fit Least Squares Solution 
 
Input Data 
     x(k)       y(k)     weight w(k) 
  -40.0000   -24.0000     2.0000 
  -15.0000   -24.0000     5.0000 
   10.0000   -12.0000     7.0000 
   38.0000    15.0000     3.0000 
   67.0000    30.0000     3.0000 
 
Coefficient matrix B of observation equations v + Bx = f 
   40.0000   -1.0000 
   15.0000   -1.0000 
  -10.0000   -1.0000 
  -38.0000   -1.0000 
  -67.0000   -1.0000 
 
Vector of numeric terms f of observation equations v + Bx = f 
   24.0000 
   24.0000 
   12.0000 
  -15.0000 
  -30.0000 
 
Coefficient matrix N of Normal equations Nx = t 
  22824.0000    230.0000 
    230.0000     20.0000 
 
Vector of numeric terms t of Normal equations Nx = t 
10620.0000 
 -117.0000 
 
Inverse of Normal equation coefficient matrix 
     4.9556e-005    -5.6990e-004 
    -5.6990e-004     5.6554e-002 
 
Vector of solutions x 
    0.5930 
  -12.6691 
 
Vector of residuals v 
  -12.3878 
    2.4363 
    5.2605 
   -5.1363 
   -2.9403 
 
 

The data in this example is taken from section  2.4.2  Line of Best Fit (unequal weights) 
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MATLAB program best_fit_line 
 

By adding the following lines to the program, the Line of Best Fit is shown on a plot together 

with the data points. 
%-------------------------------------- 
% plot data points and line of best fit 
%-------------------------------------- 
 
%  copy solutions from vector x 
m = x(1,1); 
c = x(2,1); 
 
% find minimum and maximum x coordinates 
xmin = min(x_coord); 
xmax = max(x_coord); 
 
% create a vector of x coordinates at intervals of 0.1 
% between min and max coordinates 
x = xmin:0.1:xmax; 
 
% calculate y coordinates of Line of Best Fit 
y = m*x + c; 
 
% Select Figure window and clear figure 
figure(1); 
clf(1); 
hold on; 
grid on; 
box on; 
 
% plot line of best fit and then the data points with a star (*) 
plot(x,y,'k-'); 
plot(x_coord,y_coord,'k*'); 
 
% anotate the plot 
title('Least Squares Line of Best Fit')  
xlabel('X coordinate'); 
ylabel('Y coordinate'); 
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Figure 2.3  Least Squares Line of Best Fit 
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2.7. Least Squares Curve Fitting 

The general matrix solutions for least squares adjustment of indirect observations (see 

equations (2.37) to (2.45) of section 2.6) can be applied to curve fitting.  The following two 

examples (parabola and ellipse) demonstrate the technique. 

2.7.1. Least Squares Best Fit Parabola 

Consider the following:  A surveyor working on the re-alignment of a rural road is required to 

fit a parabolic vertical curve such that it is a best fit to the series of natural surface Reduced 

Levels (RL's) on the proposed new alignment.  Figure 2.2 shows a Vertical Section of the 

proposed alignment with Chainages (x-values) and RL's (y-values). 
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Figure 2.2  Vertical Section of proposed road alignment 

 

The general equation of a parabolic curve is 

 2y ax bx c= + +  (2.46) 

This is the mathematical model that we assume our data accords with and to account for the 

measurement inconsistencies, due to the irregular natural surface and small measurement 

errors we can add residuals to the left-hand-side of (2.46) to give an observation equation 

 2
k k k ky v ax bx c+ = + +  (2.47) 
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Equation (2.47) can be re-arranged as 

 2
k kv ax bx c yk− − − = −  (2.48) 

n = 6 equations in u = 3 unknown parameters a, b, c can be written in matrix form  

as 

+ =v Bx f

  

2
1 11 1

2
2 22 2

2
6 66 6

1
1

1

v yx x
a

v yx x
b
c

v yx x

−⎡ ⎤− − −⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥−− − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −− − −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

# ## # #

where 

  ( ) ( ) ( ) ( )

2
1 11 1

2
2 22 2

6,1 6,3 3,1 6,1

2
6 66 6

1
1

, , ,

1

v yx x
a

v yx x
b
c

v yx x

−⎡ ⎤− − −⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥−− − − ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ −− − −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

v B x f
# ## # #

Considering all the measurements to be of equal precision, i.e., W = I, the least squares 

solution for the three parameters in the vector x is given by the following sequence of 

operations 

• form the normal coefficient matrix:  T=N B WB

• form the vector of numeric terms:  T=t B Wf

• compute the matrix inverse: 1−N  

• compute the solutions: 1−=x N t  

• compute the residuals: = −v f Bx  

This is the identical series of operations to solve for the parameters of the Line of Best Fit, 

except in this case u = 3.  With minor modifications to the MATLAB program best_fit_line.m 

another MATLAB program best_fit_parabola.m can be created to determine the parameters a, 

b, c of the best fit parabola.  The relevant modifications are shown below. 
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MATLAB program best_fit_parabola 
 

Making the following changes to the MATLAB program best_fit_line, a new program 
best_fit_parabola can be created. 
 
Changes to function name and help instructions 
 
function best_fit_parabola 
% 
% BEST_FIT_PARABOLA reads an ASCII textfile containing coordinate pairs (x,y) 
%   and weights (w) associated with each pair and computes the parameters 
%   a, b and c of a best fit parabola y = a(x*x) + bx + c using the least 
%   squares principle.  Results are written to a textfile having the same  
%   path and name as the data file but with the extension ".out" 
 
 

Changes to function remarks in documentation section 
 
% Remarks: 
%  This function reads numeric data from a textfile containing coordinate 
%  pairs (x,y) and weights (w) associated with each pair and computes the 
%  parameters a, b, and c of a best fit parabola y = a(x*x) + bx + c using 
%  the least squares principle.  Results are written to a textfile having 
%  the same path and name as the data file but with the extension ".out" 
 
 

Changes to formation of coefficient matrix B 
 
% form the coefficient matrix B of the observation equations 
B = zeros(n,u); 
for k = 1:n 
  B(k,1) = -(x_coord(k)^2); 
  B(k,2) = -x_coord(k); 
  B(k,3) = -1; 
end   
 
 

Changes to data plotting section 
 
%------------------------------------------ 
% plot data points and Parabola of best fit 
%------------------------------------------ 
 
%  copy solutions from vector x 
a = x(1,1); 
b = x(2,1); 
c = x(3,1); 
 
% find minimum and maximum x coordinates 
xmin = min(x_coord); 
xmax = max(x_coord); 
 
% create a vector of x coordinates at intervals of 0.1 
% between min and max coordinates 
x = xmin:0.1:xmax; 
 
% calculate y coordinates of Parabola of Best Fit 
y = a*(x.*x) + b*x + c; 
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MATLAB program best_fit_parabola 
 

Using the data from Figure 2.2 a data file c:\Temp\parabola_data.dat was created 
 
% data file for function "best_fit_parabola.m" 
%   x       y      w 
 100.0    63.48    1 
 150.0    46.20    1 
 200.0    36.62    1 
 250.0    38.96    1 
 300.0    47.42    1 
 350.0    57.72    1 
 
 
 

Running the program from the MATLAB command window generated the following output 
file c:\Temp\parabola_data.out and a plot of the Least Squares Parabola of best Fit 
 
 
Parabola of Best Fit Least Squares Solution 
 
Input Data 
     x(k)       y(k)     weight w(k) 
  100.0000    63.4800     1.0000 
  150.0000    46.2000     1.0000 
  200.0000    36.6200     1.0000 
  250.0000    38.9600     1.0000 
  300.0000    47.4200     1.0000 
  350.0000    57.7200     1.0000 
 
Coefficient matrix B of observation equations v + Bx = f 
    -10000.0000      -100.0000        -1.0000 
    -22500.0000      -150.0000        -1.0000 
    -40000.0000      -200.0000        -1.0000 
    -62500.0000      -250.0000        -1.0000 
    -90000.0000      -300.0000        -1.0000 
   -122500.0000      -350.0000        -1.0000 
 
Vector of numeric terms f of observation equations v + Bx = f 
       -63.4800 
       -46.2000 
       -36.6200 
       -38.9600 
       -47.4200 
       -57.7200 
 
Coefficient matrix N of Normal equations Nx = t 
29218750000.0000   97875000.0000     347500.0000 
   97875000.0000     347500.0000       1350.0000 
     347500.0000       1350.0000          6.0000 
 
Vector of numeric terms t of Normal equations Nx = t 
  16912600.0000 
     64770.0000 
       290.4000 
 
Inverse of Normal equation coefficient matrix 
     4.2857e-009    -1.9286e-006     1.8571e-004 
    -1.9286e-006     8.9071e-004    -8.8714e-002 
     1.8571e-004    -8.8714e-002     9.3714e+000 
 
Vector of solutions x 
       0.001500 
      -0.688221 
     116.350000 
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MATLAB program best_fit_parabola 
 

 
Vector of residuals v 
         -0.948 
          0.676 
          2.103 
         -0.889 
         -2.498 
          1.555 
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Figure 2.4  Least Squares Parabola of Best Fit 

 

 

2.7.2. Least Squares Best Fit Ellipse 

In November 1994, a survey was undertaken by staff of the Department of Geospatial Science 

at the Melbourne Cricket Ground (MCG) to determine the dimensions of the playing surface.  

This survey was to decide which of two sets of dimensions was correct, those of the 

Melbourne Cricket Club (MCC) or those of the Australian Football League (AFL).  The MCC 

curator Tony Ware and the AFL statistician Col Hutchison both measured the length of the 

ground (Tony Ware with a 100-metre nylon tape and Col Hutchison with a measuring wheel) 

and compared their distances with the "true" distance determined by Electronic Distance 

Measurement (EDM) with a Topcon 3B Total Station.  Their measurements were both 

reasonably close to the EDM distance and it turned out that the "official" AFL dimensions 
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were incorrect.  After this "measure-off", observations (bearings and distances) were made to 

seventeen points around the edge of the playing surface to determine the Least Squares 

Ellipse of Best Fit and to see if the major axis of this ellipse was the actual line between the 

goals at either end.  The Total Station was set-up close to the goal-to-goal axis and 20-25 

metres from the centre of the ground.  An arbitrary X,Y coordinate system was used with the 

origin at the Total Station and the positive X-axis in the direction of the Brunton Avenue end 

of the Great Southern Stand (approximately west).  The table of coordinates is given below; 

point numbers 1 to 6 were not points on the edge of the ground. 

 
Point No. X-coordinate Y-coordinate 

7 -54.58 17.11 
8 -45.47 36.56 
9 -28.40 53.22 
10 -2.02 63.72 
11 28.12 63.44 
12 57.49 52.55 
13 80.85 34.20 
14 98.08 9.14 
15 105.69 -17.30 
16 103.83 -46.96 
17 88.42 -71.50 
18 61.26 -86.84 
19 26.47 -91.07 
20 -6.59 -81.37 
21 -34.55 -59.24 
22 -51.51 -29.28 
23 -56.30 -2.31 

 

Table 2.4 Arbitrary coordinates of points around the 
perimeter of the playing surface of the MCG 
(date of survey November 1994) 

 

 

To develop an observation equation for the Least Squares Ellipse of Best Fit and to determine 

the lengths and directions of the axes of the ellipse the following derivation of the general 

equation of an ellipse is necessary. 

 

Figure 2.5 shows an ellipse whose axes are aligned with the u-v axes.  The semi-axes lengths 

are a and b ( ) , the centre of the ellipse is at a b> 0 0,X Y  and the ellipse axes are rotated by an 
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angle β , measured positive anti-clockwise from the x-axis.  The x-y axes are parallel to the X-

Y axes and pass through the centre of the ellipse. 
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Figure 2.5 

 

The u,v Cartesian equation of the ellipse is 

 
2 2

2 2 1u v
a b

+ =  (2.49) 

Equation (2.49) can be expressed in matrix form as 

 [ ]
2

2

1 0
1

0 1
ua

u v
vb

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦
 (2.50) 

The u,v axes are rotated (positive anti-clockwise) by an angle β  from the x,y axes and the 

relationship between coordinates is shown in Figure 2.6 
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Figure 2.6 
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Inspection of Figure 2.6 shows 

 
cos sin
sin cos

u x y
v x y

β β
β β

= +
= − +

 (2.51) 

Replacing cos β  and sin β  with the letters c and s the coordinate relationships can be 

represented as a matrix equation 

 
c s
s c

u x
v y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (2.52) 

Transposing this equation (remembering the reversal rule with the transpose of matrix 

products) gives 

 [ ] [ ] c s
s c

u v x y
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (2.53) 

Substituting (2.52) and (2.53) into (2.50) and multiplying the matrices gives 

 

[ ]

[ ]

2

2

2 2

2 2 2 2

2 2

2 2 2 2

c s c s1 0
1

s c s c0 1

c s cs cs

1
cs cs s c

xa
x y

yb

a b a b x
x y

y
a b a b

− ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞+ −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎡ ⎤⎝ ⎠⎢ ⎥ =⎢ ⎥⎢ ⎥⎛ ⎞ ⎣ ⎦⎛ ⎞⎢ ⎥− +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 

Replacing the elements of the square matrix with the symbols A, B and H, noting that the top-

right and lower-left elements are the same, this equation may be written in a general form as 

 [ ] 1
A H x

x y
H B y

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 

or 2 2Ax Hxy By2 1+ + =  (2.54) 

Equation (2.54) is the equation of an ellipse centred at the coordinate origin but with axes 

rotated from the x,y axes.  The semi axes lengths a and b, and the rotation angle β  can be 

determined from (2.54) by the following method. 

 

Letting cosx r θ=  and siny r θ=  in equation (2.54) gives the polar equation of the ellipse
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 2
2

1cos 2 cos sin sinA H B
r

θ θ θ θ+ + 2 =  (2.55) 

r is the radial distance from the centre of the ellipse and θ  is the angle measured positive 

anti-clockwise from the x-axis.  Equation (2.55) has maximum and minimum values defining 

the lengths and directions of the axes of the ellipse.  To determine these values from (2.55), 

consider the following 

Let 2 2
2

2 2

1 cos 2 cos sin sin

cos sin 2 sin

f A H B
r

A H B

θ θ θ

θ θ θ

= = + +

= + +

θ  

and aim to find the optimal (maximum and minimum) values of f and the values of θ  when 

these occur by investigating the first and second derivatives f ′  and f ′′  respectively, i.e., 

 
max 0 and 0

 is  when 
min 0 and 0

f f
f

f f
′ ′′= <⎧ ⎫ ⎧

⎨ ⎬ ⎨ ′ ′′= >⎩ ⎭ ⎩

⎫
⎬
⎭

2

 

where 
( )

( )
sin 2 2 cos2

2 cos2 4 sin

f B A H

f B A H

θ θ

θ θ

′ = − +

′′ = − −
 (2.56) 

Now the maximum or minimum value of f occurs when 0f ′ =  and from the first member of 

(2.56) the value of θ  is given by 

 2tan 2 H
A B

θ =
−

 (2.57) 

But this value of θ  could relate to either a maximum or a minimum value of f.  So from the 

second member of equations (2.56) with a value of 2θ  from equation (2.57) this ambiguity 

can be resolved by determining the sign of the second derivative f ′′  giving 

 max

min

0
 when 

0
f f
f f

′′ <⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ′′ >⎩ ⎭⎩ ⎭

⎬

 

In the polar equation of the ellipse given by equation (2.55) maxf  coincides with  and minr minf  

coincides with  so the angle maxr β  (measured positive anti-clockwise) from the x-axis to the 

major axis of the ellipse (see Figure 2.5) is found from 

 max
1

min 2

0
 when  and 

0
r f
r f

β θ
β θ π

′′ => ⎧ ⎫⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨′′ = −<⎩ ⎭⎩ ⎭ ⎩ ⎭

⎬  (2.58) 
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These results can be verified by considering the definitions of A, B and H used in the 

derivation of the polar equation of the ellipse, i.e., 

 
2 2 2 2

2 2 2 2 2 2

cos sin sin cos cos sin cos sin, ,A B H
a b a b a b

β β β β β β β
= + = + = −

β  

and 2 2 2 2

1 1 1 1cos2 , 2 sin 2A B H
a b a b

β β⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

giving 2tan 2 H
A B

β =
−

 

Noting that the values of θ  coinciding with the maximum or minimum values of the function 

f are found from equation (2.57) then 2tan 2 tan 2H
A B

β θ= =
−

 or 

 tan 2 tan 2θ β=  

whereupon 

 1
22 2   or    where  is an integern n nθ β π θ β π= + = +  

Also, from the second member of equations (2.56) 

 ( )2 cos2 4 sinf B A H 2θ θ′′ = − −  

Now, for  0n =

 θ β= , 2 2

1 12f
a bθ β=

⎛′′ = − −⎜
⎝ ⎠

⎞
⎟  and since a b , > 0f

θ β=
′′ >  

 So θ β=  makes f minimum and so r is maximum and 

 ( )

2 2
min

22 2

2 2

cos 2 sin cos sin

cos sin 1

f A H B

a a

β β β

β β

= + +

+
= =

β
 

 So  maxr a=

When  1n =

 1
2θ β π= + , sin 2 sin 2θ β= − , cos2 cos2θ β= −  and so 

1
2

2 2

1 12f
a bθ β π= +

⎛′′ = −⎜
⎝ ⎠

⎞
⎟  and since a b , > 1

2
0f

θ β π= +
′′ <  

 So 1
2θ β π= +  makes f maximum and so r is minimum and 
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( )22 2

max 2 2

sin cos 1f
b b

β β+
= =  

 So  minr b=

When  2n =

 θ β π= + , sin 2 cos2θ β= , cos2 cos2θ β=  and 0f
θ β π= +

′′ >  

 So 1
2θ β π= +  makes min 2

1f
a

=  and maxr a=  

When  3n =

 3
2θ β π= + , sin 2 cos2θ β= − , cos2 cos2θ β= −  and 3

2
0f

θ β π= +
′′ <  

 So 3
2θ β π= +  makes max 2

1f
b

=  and minr b=  

All other even values of n give the same result as 2n =  and all other odd values of n give the 

same result as  1n =

 

Now consider Figure 2.5 and the general Cartesian equation of the ellipse, re-stated again as 

  (2.59) 2 22aX hXY bY dX eY+ + + + 1=

where the translated x,y coordinate system is related to the X,Y system by 

 0X x X= +     and    0Y y Y= +  

Substituting these relationships into (2.59) gives 

  ( ) ( ) ( ) ( ) ( ) ( )2 2
0 0 0 0 02 1a x X h x X y Y b y Y d x X e y Y+ + + + + + + + + + =0

Expanding and gathering terms gives 

 
( )
( )

2 2
0 0

0 0

2 2
0 0 0 0 0 0

2 2 2

2 2

2 1

ax hxy by aX hY d x

aY hX e y

aX hX Y bY dX eY

+ + + + +

+ + +

+ + + + + =

2

 

Inspection of the left-hand-side of this equation reveals three parts: 

(i)  is the left-hand-side of the equation of an ellipse, similar in form 

to equation 

2 2ax hxy by+ +

(2.54) , 

(ii) coefficient terms of x and y; ( )0 02 2aX hY d+ +  and ( )0 02 2aY hX e+ + , 
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(iii) a constant term  2 2
0 0 0 0 02aX hX Y bY dX eY+ + + + 0

2

 

Now when the coefficients of x and y are zero the ellipse will be centred at the origin of the 

x,y axes with an equation of the form 

 2 2ax hxy by c+ + =  (2.60) 

where ( )2 2
0 0 0 0 01 2c aX hX Y bY dX eY= − + + + + 0

0
0

 (2.61) 

and 0 0

0 0

2 2
2 2
aX hY d
hX bY e

+ + =
+ + =

 (2.62) 

Equations (2.62) can be written in matrix form and solved (using the inverse of a 2,2 matrix) 

to give 0X  and  0Y

 

0

0

0
2

0

2 2
2 2

1
2 2

Xd a h
Ye h b

X b h d
Y h a eab h

− − ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−− ⎣ ⎦ ⎣ ⎦⎣ ⎦

 

giving ( )0 22
eh bdX
ab h

−
=

−
 and ( )0 22

dh aeY
ab h

−
=

−
 (2.63) 

Dividing both sides of (2.60) by c gives 

 2 2Ax Hxy By2 1+ + =  (2.64) 

where , ,a hA H B
c c

b
c

= = =  

Equation (2.64), identical to equation (2.54), is the equation of an ellipse centred at the x,y 

coordinate origin whose axes are rotated from the x,y axes by an angle β .  The rotation angle 

β  and semi-axes lengths a and b of the ellipse can be determined using the method set out 

above and equations (2.58), (2.57), (2.56) and (2.55).  Thus, we can see from the development 

that the general Cartesian equation of an ellipse is given by 

  (2.65) 2 22aX hXY bY dX eY+ + + + 1=

Note that the coefficients a and b in this equation are not the semi-axes lengths of the ellipse. 
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Returning to the problem of the Least Squares Ellipse of Best Fit for the MCG, the size, shape 

location and orientation of this ellipse can be determined from a set of observation equations 

of the form 

  (2.66) 2 22k k k k k k kv aX hX Y bY dX eY+ + + + + = 1

This observation equation is the general Cartesian equation of an ellipse with the addition of 

the residual .  The addition of  to the left-hand-side of kv kv (2.65) is simply a convenience and 

reflects the fact that the measured coordinates ,k kX Y  are inconsistent with the mathematical 

model.  For each of the 17 measured points around the perimeter of the MCG an equation can 

be written and arranged in the matrix form + =v Bx f  

 

2 2
1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2

2 2
17 17 17 17 17 17 17

1
2

1

1

a
v X X Y Y X Y

h
v X X Y Y X Y

b
d

v X X Y Y X Y
e

⎡ ⎤
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

# ## # # # #
 

The vector x contains the parameters a, h, b, d and e of the general equation of the ellipse and 

with a weight matrix W = I (i.e., all observations of equal precision) the solution for x is 

given by the following sequence of operations 

• form the normal coefficient matrix:  T=N B WB

• form the vector of numeric terms:  T=t B Wf

• compute the matrix inverse: 1−N  

• compute the solutions: 1−=x N t  

• compute the residuals: = −v f Bx  

This is the identical series of operations to solve for the parameters of the Line of Best Fit, 

and for the Parabola of Best Fit except in this case the residuals v have little practical meaning 

because they are not connected to quantities such as distances or coordinates.  In the case of 

the Least Squares Ellipse of Best Fit, it is better to compute the offsets h (perpendicular 

distances) from the ellipse to the data points rather than the residuals v. 
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To compute offsets h the following preliminary sequence of operations is required: 

 

(i) compute the parameters a, h, b, d and e using the Least Squares process set out 

above. 

(ii) compute the coordinates of the origin 0 0,X Y  and the constant c using equations 

(2.63) and (2.61). 

(iii) compute coefficients A, H and B of the ellipse given by (2.64) which can then be 

used to compute the rotation angle β  and the semi-axes lengths a and b from 

equations (2.55) to (2.58) and. 

(iv) compute the u,v coordinates of the data points using equations (2.51). 

 

Now, having the u,v coordinates, the offsets h can be computed.  Consider the sectional view 

of a quadrant of an ellipse in Figure 2.7.  The u,v axes are in the direction of the major and 

minor axes respectively (a and b are the semi-axes lengths) and P is a point related to the 

ellipse by the normal, which makes an angle φ  with the major axis, and the distance h = QP 

along the normal.  The u,v coordinates of P are the distances LP and MP respectively.  From 

the geometry of an ellipse, the normal intersects the minor axis at H and the distance QH ν=  

(where ν  is the Greek symbol nu) and the distances DH and OH are 2eν  and 2 sineν φ  

respectively.  e is the eccentricity of the ellipse and the eccentricity and flattening f of an 

ellipse are related to the semi-axes a and b. 
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Figure 2.7  u,v coordinates of P related to an ellipse (a,b) 

 

The equations for f, 2 and e ν  are 

 ( )2

2 2

2

1 sin

a bf
a

e f f
a

e
ν

φ

−
=

= −

=
−

 

Using these relationships, the angle φ  and perpendicular distance h are given by 

 
2 sintan v e

u
ν φφ +

=  (2.67) 

 
cos

uh ν
φ

= −  (2.68) 

Inspecting these equations; if the semi-axes a,b and the u,v coordinates of P are known, the 

perpendicular offset h can be determined from (2.68) and (2.67).  It should be noted that 

functions of φ  appear on both sides of the equals sign of equation (2.67) and φ  must be 

solved by iteration. 
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To determine the Least Square Best Fit Ellipse for the playing surface of the MCG a 

MATLAB program best_fit_ellipse.m operating in the same way as the MATLAB programs 

best_fit_line and best_fit_parabola with a data file (in this example: MCG_ellipse_data.dat)  
 

Data file c:\Temp\MCG_ellipse_data.dat 
 
 
% Data file for MCG Survey, November 1994 
% Coordinates of 17 boundary points (edge of concrete) 
% 
% point      X       Y    weight 
    7     -54.58   17.11    1 
    8     -45.47   36.56    1 
    9     -28.40   53.22    1 
   10      -2.02   63.72    1 
   11      28.12   63.44    1 
   12      57.49   52.55    1 
   13      80.85   34.20    1 
   14      98.08    9.14    1 
   15     105.69  -17.30    1  
   16     103.83  -46.96    1 
   17      88.42  -71.50    1 
   18      61.26  -86.84    1 
   19      26.47  -91.07    1 
   20      -6.59  -81.37    1 
   21     -34.55  -59.24    1  
   22     -51.51  -29.28    1 
   23     -56.30   -2.31    1 
 

 

gives the following results (contained in an output file having the same name and path as the 

data file but with the extension .dat) and plot on the screen. 

 

Output file c:\Temp\MCG_ellipse_data.out 
 
 
Ellipse of Best Fit Least Squares Solution 
 
Input Data 
 point     x(k)         y(k)       weight w(k) 
  7     -54.5800      17.1100       1.0000 
  8     -45.4700      36.5600       1.0000 
  9     -28.4000      53.2200       1.0000 
 10      -2.0200      63.7200       1.0000 
 11      28.1200      63.4400       1.0000 
 12      57.4900      52.5500       1.0000 
 13      80.8500      34.2000       1.0000 
 14      98.0800       9.1400       1.0000 
 15     105.6900     -17.3000       1.0000 
 16     103.8300     -46.9600       1.0000 
 17      88.4200     -71.5000       1.0000 
 18      61.2600     -86.8400       1.0000 
 19      26.4700     -91.0700       1.0000 
 20      -6.5900     -81.3700       1.0000 
 21     -34.5500     -59.2400       1.0000 
 22     -51.5100     -29.2800       1.0000 
 23     -56.3000      -2.3100       1.0000 
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 General Equation of Ellipse with X,Y origin not at centre of ellipse 
 aXX + 2hXY + bYY + dX + eY = 1 
 a =  1.720717e-004 
 h =  2.690541e-005 
 b =  1.865607e-004 
 d = -7.743828e-005 
 e =  3.729881e-005 
 
 Equation of Ellipse with x,y origin at centre of ellipse 
 Axx + 2Hxy + Byy = 1 
 A =  1.535544e-004 
 H =  2.401002e-005 
 B =  1.664842e-004 
 
 Ellipse parameters 
 semi-major axis a =   86.017 
 semi-minor axis b =   73.544 
 
 Bearing of major axis 
 beta(degrees) =   -37.465030 
 beta(DMS)      =  -37 27 54.11 
 Brg(degrees)   =   127.465030 
 Brg(DMS)       =  127 27 54.11 
 
 Coordinates of centre of ellipse 
 X(centre) =       24.620 
 Y(centre) =      -13.547 
 
 
Data and offsets to ellipse of best fit 
  pt      offset       X          Y          x          y          u          v 
   7       0.129    -54.580     17.110    -79.200     30.657    -81.511    -23.842 
   8       0.159    -45.470     36.560    -70.090     50.107    -86.111     -2.863 
   9       0.162    -28.400     53.220    -53.020     66.767    -82.696     20.744 
  10       0.164     -2.020     63.720    -26.640     77.267    -68.145     45.124 
  11       0.060     28.120     63.440      3.500     76.987    -44.051     63.236 
  12      -0.090     57.490     52.550     32.870     66.097    -14.116     72.457 
  13      -0.223     80.850     34.200     56.230     47.747     15.588     72.101 
  14      -0.216     98.080      9.140     73.460     22.687     44.507     62.691 
  15      -0.123    105.690    -17.300     81.070     -3.753     66.630     46.334 
  16       0.936    103.830    -46.960     79.210    -33.413     83.195     21.661 
  17       0.284     88.420    -71.500     63.800    -57.953     85.891     -7.191 
  18      -1.181     61.260    -86.840     36.640    -73.293     73.664    -35.887 
  19      -0.224     26.470    -91.070      1.850    -77.523     48.624    -60.407 
  20       0.627     -6.590    -81.370    -31.210    -67.823     16.483    -72.817 
  21       0.554    -34.550    -59.240    -59.170    -45.693    -19.171    -72.259 
  22      -0.438    -51.510    -29.280    -76.130    -15.733    -50.856    -58.796 
  23      -0.703    -56.300     -2.310    -80.920     11.237    -71.063    -40.303 
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Figure 2.8  Plot of Least Squares Best Fit Ellipse and data points for the MCG 

 

The MATLAB program best_fit_ellipse.m calls two other MATLAB functions ellipse.m (a 

function to compute the coordinates of points on an ellipse) and DMS.m (a function to convert 

decimal degree to degrees, minutes and seconds).  A copy of these programs is shown below. 
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MATLAB program best_fit_ellipse 
 

 
function best_fit_ellipse 
% 
% BEST_FIT_ELLIPSE reads an ASCII textfile containing point numbers of 
%   coordinate pairs (X,Y) and weights (W) associated with each pair and  
%   computes the cordinates of the origin, the lengths of the axes and  
%   the rotation angle of the Best Fit Ellipse using the least squares 
%   principle.  Results are written to a textfile having the same path 
%   and name as the data file but with the extension ".out" 
 
%============================================================================ 
% Function:  best_fit_ellipse 
% 
% Author: 
%  Rod Deakin,  
%  School of Mathematical and Geospatial Sciences, RMIT University, 
%  GPO Box 2476V, MELBOURNE VIC 3001 
%  AUSTRALIA 
%  email: rod.deakin@rmit.edu.au 
% 
% Date: 
%  Version 1.0  22 March 2003 
%  Version 1.1  10 May   2003 
%  Version 1.2   9 November 2005 
% 
% Functions Required: 
%    [X,Y] = ellipse(a,b,theta) 
%  [D,M,S] = DMS(DecDeg)            
% 
% Remarks:   
%  The general equation of an ellipse is 
%    aXX + 2hXY + bYY + dX + eY = 1 
%  This function computes the parameters a,h,b,d,e of a Least Squares Best Fit 
%  Ellipse given a set of X,Y coordinate pairs and weights (w) associated with  
%  each pair.  The centre of the best fit ellipse is at Xo = (eh-db)/(2ab-2hh) 
%  and Yo = (dh-ea)/(2ab-2hh).   
%  A constant c = 1 - (aXoXo + 2hXoYo + bYoYo + dXo + eYo) is divided into a,  
%  h and b giving A = a/c, H = h/c and B = b/c which are the parameters of an  
%  ellipse Axx +2Hxy + Byy = 1.  The major axis of this ellipse is rotated 
%  from the coordinate axes by an angle beta which can be determined from the 
%  polar equation of an ellipse 
%  A*cos_squared(theta) + 2H*cos(theta)*sin(theta) + B*sin_squared(theta) = 
1/r_squared 
%  The maximum and minimum values of this function occur for theta given by 
%  tan(2*theta) = 2H/(A-B) and the angle beta is determined by evaluating 
%  the sign of the second derivative of the polar equation.  This angle is 
%  substituted into the polar equation to determine the length of the semi-major 
%  axis length a.  Beta - 90 degrees will give the length of the semi-minor 
%  axis length b 
%  Note that the semi-axes lengths a,b are not the same as the parameters  
%  a and b in the general equation of the ellipse. 
%  Results are written to a textfile having the same path and name as the  
%  data file but with the extension ".out" 
% 
% References: 
%  Notes on Least Squares (2005), Geospatial Science, RMIT 
%      University, 2005 
% 
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MATLAB program best_fit_ellipse 
 

% Arrays: 
%  B       -  coeff matrix of observation equation v + Bx = f 
%  f       -  vector of numeric terms 
%  N       -  coefficient matrix of Normal equations Nx = t 
%  Ninv    -  inverse of N 
%  p       -  vector of perpendicular distances from ellipse to points 
%  point   -  vector of point numbers 
%  t       -  vector of numeric terms of Normal equations Nx = t 
%  u,v     -  vectors of u,v coords of ellipse 
%  W       -  weight matrix 
%  weight  -  vector of weights 
%  x       -  vector of solutions 
%  x,y     -  vectors of x,y coords of ellipse 
%  x_coord -  vector of X coordinates  
%  y_coord -  vector of Y coordinates 
%  xpt,ypt -  vectors of coords for point number locations on plot 
%  Xpt,Ypt -  vectors Xpt = xpt + Xc, Ypt = ypt + Yc 
%   
% 
% Variables: 
%  A,B,H   - parameters of ellipse Axx + 2Hxy + Byy = 1 
%  a,h,b,  - parameters of ellipse aXX + 2hXY + bYY + dX + eY = 1 
%  d,e 
%  a1,b1   - semi-major and semi-minor axes of ellipse 
%  beta    - angle between x-axis and major axis of ellipse (degrees) 
%  brg     - bearing of major axis (u-axis) of ellipse (degrees) 
%  c       - constant of translated ellipse or cos(x) 
%  d2r     - degree to radian conversion factor = 180/pi = 57.29577951... 
%  e2      - eccentricity squared 
%  flat    - flattening of ellipse 
%  f_dd    - second derivative of the function "f" where f is the polar 
%            equation of an ellipse 
%  lat     - latitude (radians) of point related to an ellipse 
%  n       - number of equations 
%  new_lat - new latitude in iteration  
%  nu      - radius of curvature in prime meridian 
%  pion2   - 90 degrees or pi/2 
%  u       - number of unknowns 
%  s       - sin(x) 
%  s1,s2   - sin(lat) and sin_squared(lat) 
%  scale   - scale factor to reduce size of numbers in normal equations 
%  theta   - angle for which polar equation of ellipse gives max/min 
%            values 
%  two_theta - 2*theta 
%  Xc,Yc   - coords of centre of ellipse X = x + Xc, Y = y + Yc 
%  X0,Y0   - scaled coords of centre of ellipse 
% 
%============================================================================ 
 
% 
% Set program constants 
d2r   = 180/pi; 
pion2 = pi/2; 
scale = 100; 
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MATLAB program best_fit_ellipse 
 

%------------------------------------------------------------------------- 
% 1. Call the User Interface (UI) to choose the input data file name 
% 2. Concatenate strings to give the path and file name of the input file 
% 3. Strip off the extension from the file name to give the rootName 
% 4. Add extension ".out" to rootName to give the output filename 
% 5. Concatenate strings to give the path and file name of the output file 
%------------------------------------------------------------------------- 
filepath = strcat('c:\temp\','*.dat'); 
[infilename,inpathname] = uigetfile(filepath); 
infilepath = strcat(inpathname,infilename); 
rootName   = strtok(infilename,'.'); 
outfilename = strcat(rootName,'.out'); 
outfilepath = strcat(inpathname,outfilename); 
 
%---------------------------------------------------------- 
% 1. Load the data into an array whose name is the rootName 
% 2. set fileTemp = rootName 
% 3. Copy columns of data into individual arrays 
%---------------------------------------------------------- 
load(infilepath); 
fileTemp = eval(rootName); 
point   = fileTemp(:,1); 
x_coord = fileTemp(:,2); 
y_coord = fileTemp(:,3); 
weight  = fileTemp(:,4); 
 
% Determine the number of equations and set the number of unknowns 
n = length(point); 
u = 5; 
 
% Set the elements of the weight matrix W 
W = zeros(n,n); 
for k = 1:n 
  W(k,k) = weight(k); 
end   
 
% Form the coefficient matrix B of the observation equations. 
% Note that the coordinates are scaled by a factor 1/100 to 
% reduce the size of equations. 
B = zeros(n,u); 
for k = 1:n 
  B(k,1) = (x_coord(k)/scale)^2; 
  B(k,2) = (x_coord(k)/scale)*(y_coord(k)/scale); 
  B(k,3) = (y_coord(k)/scale)^2; 
  B(k,4) = x_coord(k)/scale; 
  B(k,5) = y_coord(k)/scale; 
end   
 
% Form the vector of numeric terms f 
f = ones(n,1); 
 
% Form the normal equation coefficient matrix N 
% and the vector of numeric terms t 
N = B'*W*B; 
t = B'*W*f; 
 
% Compute the inverse and solve the system Nx = t 
Ninv = inv(N); 
x = Ninv*t; 
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MATLAB program best_fit_ellipse 
 

% Copy the results into the variables a,h,b,d,e 
a = x(1,1); 
h = x(2,1)/2; 
b = x(3,1); 
d = x(4,1); 
e = x(5,1); 
 
% Compute the coordinates of the centre of the ellipse 
X0 = (e*h - b*d)/(2*(a*b - h*h)); 
Y0 = (d*h - a*e)/(2*(a*b - h*h)); 
Xc = X0*scale; 
Yc = Y0*scale; 
 
% Compute the variables A,H,B and then the lengths 
% of the axes and the rotation angle beta 
c  = 1-(a*X0*X0 + 2*h*X0*Y0 + b*Y0*Y0 + d*X0 + e*Y0); 
A = a/c; 
H = h/c; 
B = b/c; 
 
% compute the angle theta for max or min 
two_theta = atan2(2*H,(A-B)); 
% compute second derivative 
f_dd = 2*(B-A)*cos(two_theta) - 4*H*sin(two_theta); 
% test the second derivative to determine max or min 
theta     = two_theta/2; 
if f_dd < 0 
    beta = theta - pion2; 
else 
    beta = theta; 
end     
% compute semi-major axis length 
c = cos(beta); 
s = sin(beta); 
a1 = sqrt(1/(A*c*c + 2*H*c*s + B*s*s))*scale; 
% compute semi-minor axis length 
c = cos(beta+pion2); 
s = sin(beta+pion2); 
b1 = sqrt(1/(A*c*c + 2*H*c*s + B*s*s))*scale; 
% convert beta to degrees 
beta = beta*d2r; 
 
% Calculate bearing of major axis noting that the rotation angle 
% beta is considered positive anti-clockwise from the X-axis to 
% the major axis of the ellipse 
brg = 360+90-beta; 
if(brg>360) 
  brg = brg-360; 
end 
 
%----------------------------------------------------------------------- 
% Compute perpendicular distances from points to the ellipse of best fit 
%----------------------------------------------------------------------- 
% Create a set of u,v coordinates by first reducing the X,Y coords  
% to x,y coordinates and then rotating these coordinates by the  
% rotation angle beta.  The u-axis is the major axis of the ellipse. 
x = x_coord-Xc; 
y = y_coord-Yc; 
for k=1:n 
  u(k,1) =  x(k)*cos(beta/d2r) + y(k)*sin(beta/d2r); 
  v(k,1) = -x(k)*sin(beta/d2r) + y(k)*cos(beta/d2r); 
end 
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MATLAB program best_fit_ellipse 
 

% Compute the flattening and eccentricity squared for the ellipse 
flat = (a1-b1)/a1; 
e2   = flat*(2-flat); 
 
% Compute the distance along the normal to the ellipse passing 
% through the point 
for k=1:n 
  % Compute the latitude of the normal to the ellipse through  
  % the point by iteration.  nu is the radius of curvature of 
  % the prime vertical normal section 
  lat     = pi/2; 
  new_lat = atan2(v(k,1),u(k,1)); 
  while(abs(new_lat-lat)>1e-10) 
    lat     = new_lat; 
    s1      = sin(lat); 
    s2      = s1*s1; 
    nu      = a1/sqrt(1-e2*s2); 
    new_lat = atan2((v(k,1)+nu*e2*s1),u(k,1));  
  end 
  % p is the distance along the normal from the ellipse to the point 
  p(k,1) = (u(k,1)/cos(lat))-nu; 
end 
 
%---------------------------------------------------- 
% Compute the coordinate locations for a point number 
% to be shown on the plot.  These locations used in 
% in the plot routines below. 
%---------------------------------------------------- 
for k=1:n 
  theta  = atan2(x(k),y(k)); 
  if theta<0 
    theta = theta + 2*pi;   
  end   
  r      = sqrt(x(k)^2 + y(k)^2)-10; 
  xpt(k) = r*sin(theta);  
  ypt(k) = r*cos(theta);  
end 
Xpt = xpt + Xc; 
Ypt = ypt + Yc; 
 
 
%----------------------------- 
% print the data to the screen 
%----------------------------- 
fprintf('\n Ellipse of Best Fit\n'); 
fprintf('\n General Equation of Ellipse with X,Y origin not at centre of ellipse'); 
fprintf('\n aXX + 2hXY + bYY + dX + eY = 1'); 
fprintf('\n a = %14.6e',a/scale^2); 
fprintf('\n h = %14.6e',h/scale^2); 
fprintf('\n b = %14.6e',b/scale^2); 
fprintf('\n d = %14.6e',d/scale^2); 
fprintf('\n e = %14.6e\n',e/scale^2); 
fprintf('\n Equation of Ellipse with x,y origin at centre of ellipse'); 
fprintf('\n Axx + 2Hxy + Byy = 1'); 
fprintf('\n A = %14.6e',A/scale^2); 
fprintf('\n H = %14.6e',H/scale^2); 
fprintf('\n B = %14.6e\n',B/scale^2); 
fprintf('\n Ellipse parameters'); 
fprintf('\n semi-major axis a = %8.3f',a1); 
fprintf('\n semi-minor axis b = %8.3f\n',b1); 
fprintf('\n Bearing of major axis'); 
fprintf('\n beta(degrees) = %12.6f',beta); 
[D,M,S] = DMS(beta); 
fprintf('\n beta(DMS)      = %4d %2d %5.2f',D,M,S); 
fprintf('\n Brg(degrees)   = %12.6f',brg); 
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MATLAB program best_fit_ellipse 
 

[D,M,S] = DMS(brg); 
fprintf('\n Brg(DMS)       = %4d %2d %5.2f\n',D,M,S); 
fprintf('\n Coordinates of centre of ellipse'); 
fprintf('\n X(centre) = %12.3f',Xc); 
fprintf('\n Y(centre) = %12.3f\n',Yc); 
fprintf('\n Data and offsets to ellipse of best fit'); 
fprintf('\n  pt      offset       X          Y          x          y          u          
v'); 
for k=1:n 
  fprintf('\n %3d  %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f 
%10.3f',point(k),p(k,1),x_coord(k),y_coord(k),x(k),y(k),u(k,1),v(k,1)); 
end   
 
fprintf('\n\n'); 
 
%---------------------------------- 
% print the data to the output file 
%---------------------------------- 
 
% Open the output file 
fidout  = fopen(outfilepath,'wt'); 
 
fprintf(fidout,'\n\nEllipse of Best Fit Least Squares Solution'); 
 
fprintf(fidout,'\n\nInput Data'); 
fprintf(fidout,'\n point     x(k)         y(k)       weight w(k)'); 
for k = 1:n 
  fprintf(fidout,'\n%3d %12.4f %12.4f 
%12.4f',point(k),x_coord(k),y_coord(k),weight(k)); 
end   
 
fprintf(fidout,'\n\n General Equation of Ellipse with X,Y origin not at centre of 
ellipse'); 
fprintf(fidout,'\n aXX + 2hXY + bYY + dX + eY = 1'); 
fprintf(fidout,'\n a = %14.6e',a/scale^2); 
fprintf(fidout,'\n h = %14.6e',h/scale^2); 
fprintf(fidout,'\n b = %14.6e',b/scale^2); 
fprintf(fidout,'\n d = %14.6e',d/scale^2); 
fprintf(fidout,'\n e = %14.6e\n',e/scale^2); 
fprintf(fidout,'\n Equation of Ellipse with x,y origin at centre of ellipse'); 
fprintf(fidout,'\n Axx + 2Hxy + Byy = 1'); 
fprintf(fidout,'\n A = %14.6e',A/scale^2); 
fprintf(fidout,'\n H = %14.6e',H/scale^2); 
fprintf(fidout,'\n B = %14.6e\n',B/scale^2); 
fprintf(fidout,'\n Ellipse parameters'); 
fprintf(fidout,'\n semi-major axis a = %8.3f',a1); 
fprintf(fidout,'\n semi-minor axis b = %8.3f\n',b1); 
fprintf(fidout,'\n Bearing of major axis'); 
fprintf(fidout,'\n beta(degrees) = %12.6f',beta); 
[D,M,S] = DMS(beta); 
fprintf(fidout,'\n beta(DMS)      = %4d %2d %5.2f',D,M,S); 
fprintf(fidout,'\n Brg(degrees)   = %12.6f',brg); 
[D,M,S] = DMS(brg); 
fprintf(fidout,'\n Brg(DMS)       = %4d %2d %5.2f\n',D,M,S); 
fprintf(fidout,'\n Coordinates of centre of ellipse'); 
fprintf(fidout,'\n X(centre) = %12.3f',Xc); 
fprintf(fidout,'\n Y(centre) = %12.3f\n',Yc); 
fprintf(fidout,'\n Data and offsets to ellipse of best fit'); 
fprintf(fidout,'\n  pt      offset       X          Y          x          y          
u          v'); 
for k=1:n 
  fprintf(fidout,'\n %3d  %10.3f %10.3f %10.3f %10.3f %10.3f %10.3f 
%10.3f',point(k),p(k,1),x_coord(k),y_coord(k),x(k),y(k),u(k,1),v(k,1)); 
end   
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MATLAB program best_fit_ellipse 
 

fprintf(fidout,'\n\n'); 
 
% Close the output file 
fclose(fidout); 
 
%------------------------------------------------------------------- 
% Call function 'ellipse' with parameters a,b,theta and receive back 
% X,Y coordinates whose origin is at the centre of the ellipse 
%------------------------------------------------------------------- 
[X,Y] = ellipse(a1,b1,beta);   
X = X + Xc; 
Y = Y + Yc; 
   
%------------------------------------------------------------------- 
% Set the X,Y coordinates of the major and minor axes of the ellipse 
%------------------------------------------------------------------- 
aX = [X(180) X(360)]; 
aY = [Y(180) Y(360)]; 
bX = [X(90) X(270)]; 
bY = [Y(90) Y(270)]; 
 
%------------------------------------------------- 
% plot the ellipse of Best Fit and the data points 
%------------------------------------------------- 
figure(1); 
clf(1); 
plot(X,Y,'r-',aX,aY,'b-',bX,bY,'b-'); 
hold on; 
plot(x_coord,y_coord,'k.'); 
axis equal; 
box off; 
 
% plot the point numbers inside the ellipse 
point_string=int2str(point); 
text(Xpt,Ypt,point_string); 
 
% anotate the plot 
title('Least Squares Ellipse of Best Fit')  
xlabel('X coordinate'); 
ylabel('Y coordinate'); 
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MATLAB program ellipse 
 

 
function [X,Y] = ellipse(a,b,theta) 
 
% ELLIPSE[X Y] = (A,B,THETA)  Function to compute the X,Y coordinates of  
%   an ellipse given semi-axes A and B and a rotation angle THETA.   
%   The angle THETA is considered to be positive anti-clockwise from the x-axis 
 
% set degree to radian conversion factor 
d2r = pi/180; 
 
% Calculate u,v coordinates of ellipse using parametric equations 
% u = a*cos(psi) 
% v = b*sin(psi) 
% where the u-axis is the major axis, the v-axis is the minor axis  
% and psi is the auxiliary angle measured positive anti-clockwise 
% from the u-axis to a point moving around the auxiliary circle of  
% radius a.  The x,y coordinates are computed by rotating the ellipse 
% axes by an angle theta, considered as positive anti-clockwise from the x-axis. 
% x = u*cos(theta) - v*sin(theta) 
% y = u*sin(theta) + v*cos(theta) 
 
for k=1:360 
  u    = a*cos(k*d2r);   
  v    = b*sin(k*d2r);   
  X(k) = u*cos(theta*d2r) - v*sin(theta*d2r); 
  Y(k) = u*sin(theta*d2r) + v*cos(theta*d2r); 
end 
return 
 

 

MATLAB program DMS 
 

 
function [D,M,S] = DMS(DecDeg) 
% [D,M,S] = DMS(DecDeg)  This function takes an angle in decimal degrees 
%   and returns Degrees, Minutes and Seconds 
 
val = abs(DecDeg); 
D = fix(val); 
M = fix((val-D)*60); 
S = (val-D-M/60)*3600; 
if(DecDeg<0) 
  D = -D; 
end 
return 
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3. PROPAGATION OF VARIANCES 

In least squares problems, where measurements (with associated estimates of variances and 

covariances) are used to determine the best estimates unknown quantities it is important to be 

able to determine the precisions of these estimated (or calculated) quantities.  To do this 

requires an understanding of propagation of variances so that certain rules and techniques can 

be developed. 

 

3.1. Some Statistical Definitions 

Students studying Least Squares must become familiar with statistical definitions, 

terminology and rules.  Some of these rules and definitions have been introduced in earlier 

sections of these notes, e.g., in Chapter 2 the definition and classification of measurements 

and measurement errors was discussed as well as the rules for computing means and variances 

for finite and infinite populations.  In addition, Chapter 2 contains sections explaining matrix 

representations of variances and covariances, known as variance-covariance matrices Σ  and 

the related cofactor matrices Q and weight matrices W.  The following sections in this chapter 

repeat some of the rules and definitions already introduced as well as expanding on some 

concepts previously mentioned. 

3.1.1. Experiments, Sets, Sample Spaces, Events and Probability 

The term statistical experiment can be used to describe any process by which several chance 

observations are obtained.  All possible outcomes of an experiment comprise a set called the 

sample space and a set or sample space contains N elements or members.  An event is a subset 

of the sample space containing n elements.  Experiments, sets, sample spaces and events are 

the fundamental "tools" used to determine the probability of certain events where probability 

is defined as 

 ( ) nP Event
N

=  (3.1) 

For example, if a card is drawn from a deck of playing cards, what is the probability that it is 

a heart?  In this case, the experiment is the drawing of the card and the possible outcomes of 

the experiment could be one of 52 different cards, i.e., the sample space is the set of  52N =
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possible outcomes and the event is the subset containing 13n =  hearts.  The probability of 

drawing a heart is 

 ( ) 13Heart 0.25
52

nP
N

= = =  

This definition of probability is a simplification of a more general concept of probability that 

can be explained in the following manner (see Johnson & Leone, 1964, pp.32-3). 

 

Suppose observations are made on a series of occasions (often termed trials) and 

during these trials it is noted whether or not a certain event occurs.  The event can 

be almost any observable phenomenon, for example, that the height of a person 

walking through a doorway is greater than 1.8 metres, that a family leaving a 

cinema contains three children, that a defective item is selected from an assembly 

line, and so on.  These trials could be conducted twice a week for a month, three 

times a day for six months or every hour for every day for 10 years.  In the 

theoretical limit, the number of trials N would approach infinity and we could 

assume, at this point, that we had noted every possible outcome.  Therefore, as 

 then N becomes the number of elements in the sample space containing 

all possible outcomes of the trials.  Now for each trial we note whether or not a 

certain event occurs, so that at the end of N trials we have noted  events.  The 

probability of the event (if it in fact occurs) can then be defined as 

N →∞

Nn

 ( ) lim N
N

nP Event
N→∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Since  and N are both non-negative numbers and  is not greater than N then Nn Nn

 0 1Nn
N

≤ ≤  

Hence 

 { }0 1P Event≤ ≤  

If the event occurs at every trial then Nn N=  and 1Nn N =  for all N and so 

.  This relationship can be described as: the probability of a certain 

(or sure) event is equal to 1. 

( ) 1P Event =
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If the event never occurs, then 0Nn =  and 0Nn N =  for all N and so 

.  This relationship can be described as: the probability of an 

impossible event is zero. 

( ) 0P Event =

 

The converse of these two relationships need not hold, i.e., a probability of one 

need not imply certainty since it is possible that lim 1NN
n N

→∞
=  without  for 

all values of N and a probability of zero need not imply impossibility since it is 

possible that 

1Nn =

lim 0NN
n N

→∞
=  even though .  Despite these qualifications, it 

is useful to think of probability as measured on a scale varying from (near) 

impossibility at 0 to (near) certainty at 1.  It should also be noted that this 

definition of probability (or any other definition) is not directly verifiable in the 

sense that we cannot actually carry out the infinite series of trials to see whether 

there really is a unique limiting value for the ratio 

0Nn >

Nn N .  The justification for 

this definition of probability is utilitarian, in that the results of applying theory 

based on this definition prove to be useful and that it fits with intuitive ideas.  

However, it should be realized that it is based on the concept of an infinitely long 

series of trials rather than an actual series, however long it may be. 

 

3.1.2. Random Variables and Probability Distributions of Random Variables 

A random variable X is a rule or a function, which associates a real number with each point in 

a sample space.  As an example, consider the following experiment where two identical coins 

are tossed; h denotes a head and t denotes a tail. 

 

Experiment: Toss two identical coins. 

Sample space: { }, , ,S hh ht th tt= . 

Random Variable: X, the number of heads obtained, may be written as 

 

( )
( )
( )
( )

2

1

1

0

X hh

X ht

X th

X tt

=

=

=

=
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In this example X is the random variable defined by the rule "the number of heads obtained".  

The possible values (or real numbers) that X may take are 0, 1, 2.  These possible values are 

usually denoted by x and the notation X x=  denotes x as a possible real value of the random 

variable X. 

 

Random variables may be discrete or continuous.  A discrete random variable assumes each 

of its possible values with a certain probability.  For example, in the experiment above; the 

tossing of two coins, the sample space { }, , ,S hh ht th tt=  has 4N =  elements and the 

probability the random variable X (the number of heads) assumes the possible values 0, 1 and 

2 is given by 

 ( ) 1 2 1
4 4 4

0 1 2x
P X x=

 

Note that the values of x exhaust all possible cases and hence the probabilities add to 1 

 

A continuous random variable has a probability of zero of assuming any of its values and 

consequently, its probability distribution cannot be given in tabular form.  The concept of the 

probability of a continuous random variable assuming a particular value equals zero may 

seem strange, but the following example illustrates the point.  Consider a random variable 

whose values are the heights of all people over 21 years of age.  Between any two values, say 

1.75 metres and 1.85 metres, there are an infinite number of heights, one of which is 1.80 

metres.  The probability of selecting a person at random exactly 1.80 metres tall and not one 

of the infinitely large set of heights so close to 1.80 metres that you cannot humanly measure 

the difference is extremely remote, and thus we assign a probability of zero to the event.  It 

follows that probabilities of continuous random variables are defined by specifying an interval 

within which the random variable lies and it does not matter whether an end-point is included 

in the interval or not. 

 
( ) ( ) ( )

( )
P a X b P a X b P X b

P a X b

< ≤ = < < + =

= < <
 

 

It is most convenient to represent all the probabilities of a random variable X by a formula or 

function denoted by ( )Xf x , , ( )Xg x ( )Xh x , etc, or by ( )XF x , ( )XG x , , etc. ( )XH x
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In this notation the subscript X denotes that ( )Xf x  or ( )XF x  is a function of the random 

variable X which takes the numerical values x within the function.  Such functions are known 

as probability distribution functions and they are paired; i.e., ( )Xf x  pairs with , 

 pairs with 

( )XF x

( )Xg x ( )XG x , etc.  The functions with the lowercase letters are probability 

density functions and those with uppercase letters are cumulative distribution functions. 

 

For discrete random variables, the probability density function has the properties 

 1. ( ) ( )X k kf x P X x= =  

 2.  ( )
1

1X k
k

f x
∞

=

=∑

and the cumulative distribution function has the properties 

 1.  ( ) ( )X k kF x P X x= ≤

 2. ( ) ( )
k

X X
x x

F x f x
≤

= ∑ k  

 

As an example consider the probability distribution functions ( )Xf x  and  of the sum 

of the numbers when a pair of dice is tossed. 

( )XF x

 

Experiment: Toss two identical dice. 

Sample space:  

1,1 1, 2 1, 3 1, 4 1, 5 1, 6

2,1 2, 2 2, 3 2, 4 2, 5 2, 6

3,1 3, 2 3, 3 3, 4 3, 5 3, 6

4,1 4, 2 4, 3 4, 4 4, 5 4, 6

5,1 5, 2 5, 3 5, 4 5, 5 5, 6

6,1 6, 2 6, 3 6, 4 6, 5 6, 6

S

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

Random Variable: X, the total of the two numbers 

 

The probability the random variable X assumes the possible values 2, 3, 4, , 12x = …  is given 

in Table 3.1 
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( )

2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 5 4 3 2 1
36 36 36 36 36 36 36 36 36 36 36

x

P X x=
 

Table 3.1  Table of probabilities 

 

Note that the values of x exhaust all possible cases and hence the probabilities add to 1 

 

The probability density function ( )Xf x  can be deduced from Table 3.1 

 ( ) 6 7
, 2,3,4,

36X

x
f x x

− −
= = …,12  

Probability distributions are often shown in graphical form.  For discrete random variables, 

probability distributions are generally shown in the form of histograms consisting of series of 

rectangles associated with values of the random variable.  The width of each rectangle is one 

unit and the height is the probability given by the function ( )Xf x  and the sum of the areas of 

all the rectangles is 1.  Figure 3.1 shows the Probability histogram for the random variable X, 

the sum of the numbers when a pair of dice is tossed. 
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Figure 3.1  Probability histogram 

 

© 2005, R.E. Deakin Notes on Least Squares (2005) 3–6 



RMIT University Geospatial Science 

 

The MATLAB function dice_pdf.m was used to create the Probability histogram of Figure 3.1 
 
function dice_pdf 
% Function DICE_PDF calculates the probability of a random variable 
% taking the sum of the values when two dice are tossed and 
% plots the probability density function as a histogram. 
 
% create an array of the possible outcomes 
x = 2:12; 
 
% calculate the probability 
y = (6-abs(x-7))/36; 
 
% Clear Figure 1 and plot the histogram 
figure(1); 
clf(1); 
box on; 
grid on; 
bar(x,y,1,'-w'); 
 
% anotate the plot 
title('Probability histogram')  
xlabel('x'); 
ylabel('Probability f(x)'); 
 

 

Figure 3.2 shows the cumulative distribution function ( ) ( )
k

X X
x x

F x f x
≤

= k∑  for the random 

variable X, the sum of the numbers when a pair of dice is tossed. 
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Figure 3.2  Cumulative distribution function.  [The dots at the left ends 

of the line segments indicate the value of ( )XF x  at those values of x. 
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For continuous random variables, the probability distribution functions ( )Xf x  and  

are curves, which may take various forms depending on the nature of the random variable.  

Probability density functions 

( )XF x

( )Xf x  that are used in practice to model the behaviour of 

continuous random variables are always positive and the total area under its curve, bounded 

by the x-axis, is equal to one.  These density functions have the following properties 

 1. ( ) 0  for any value of Xf x x≥  

 2. ( ) 1Xf x dx
+∞

−∞

=∫  

The probability that a random variable X lies between any two values x a=  and x b=  is the 

area under the density curve between those two values and is found by methods of integral 

calculus 

  (3.2) ( ) (
b

X
a

P a X b f x dx< < = ∫ )

The equations of the density functions ( )Xf x  are usually complicated and areas under their 

curves are found from tables.  In surveying, the Normal probability density function is the 

usual model for the behaviour of measurements (regarded as random variables) and the 

probability density function is (Kreyszig, 1970, p. 107) 

 ( )
21

21
2

x

Xf x e
μ

σ

σ π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠=  (3.3) 

μ  and σ  are the mean and standard deviation respectively of the infinite population of x and 

Figure 3.3 shows a plot of the Normal probability density curve for 2.0μ =  and 2.5σ = . 
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Figure 3.3  Normal probability density function for 2.0μ =  and 2.5σ =  

 

The MATLAB function normal_pdf.m was used to create the Normal probability density 

curve of Figure 3.3 
 
function normal_pdf(mx,sx) 
% Function NORMAL_PDF(MX,SX) calculates the probability of a random variable X 
% having a NORMAL distribution with mean MX and standard deviation 
% SX and plots the probability density function 
 
% create an array of x-values between -10 and 10 at 0.01 intervals 
x = -10:0.01:10; 
 
a = (x-mx)./sx; 
 
% calculate the density function 
y = 1/(sx*sqrt(2*pi)).*exp(-0.5.*a.^2); 
 
% Clear Figure 1 and plot the probability density curve 
figure(1); 
clf(1); 
box on; 
plot(x,y,'k'); 
grid on; 
% anotate the plot 
title('Normal Probability Density curve')  
xlabel('x'); 
ylabel('f(x)'); 
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For continuous random variables X, the cumulative distribution function has the 

following properties 

( )XF x

 1.  ( ) ( ) ( )
x

X XF x P X x f x dx
−∞

= ≤ = ∫

 2. ( ) ( )X X
d F x f x
dx

=  

In surveying, the Normal distribution is the usual model for the behaviour of measurements 

and the cumulative distribution function is (Kreyszig, 1970, p. 108) 

 ( )
21

21
2

x
x

XF x e dx
μ

σ

σ π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠

−∞
= ∫  (3.4) 

The probability that X assumes any value in an interval a X b< <  is 

 ( ) ( ) ( )
21

21
2

x
b

X X a
P a X b F b F a e dx

μ
σ

σ π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠< < = − = ∫  (3.5) 

Figure 3.4 shows a plot of the Normal cumulative distribution curve for 2.0μ =  and 2.5σ = . 
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Figure 3.4  Normal cumulative distribution function for 2.0μ =  and 2.5σ =  
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3.1.3. Multivariate Probability Density Functions 

For multiple random variables,  the term 1 2 3, , ,X X X … multivariate probability density 

function  is used to define a function whose integral gives the probability of ( )fX x 1X  lying 

in the range , 1 1 1a X b< < 2X  lying in the range a X b2 2 2< 3, < X  lying in the range 

, etc.  This probability is 3 3a X b< < 3

x "
  (3.6) 

( )

( )

31 2

1 2

1 2 3

1 2 3 1 2 3, , ,
bb b

X X
a a a

P f x x x dx dx d

f d

=

=

∫ ∫ ∫

∫
b

Xa
x x

"" "

where [ ]1 2 3
Tx x x=x " , [ ]1 2 3

Ta a a=a "  and  [ ]1 2 3
Tb b b=b "  

 

Although least squares adjustment theory does not require the random variables 

(measurements) to have particular probability distributions, the Normal distribution is the 

usual model assumed to represent measurements and associated errors and corrections 

(residuals).  The Multivariate Normal distribution of random variables has a density function 

of the following form (Mikhail, 1976, p. 27) 

 ( ) ( )
( )

( ) (1
1 2 2

1 1, , , exp
22

T
n xnf x x x f

π
−

⎧ ⎫⎪ ⎪ )x
⎧ ⎫= = × − − −⎨ ⎬ ⎨
⎩ ⎭⎪ ⎪⎩ ⎭

X X x x" μ Σ μ
Σ

⎬x  (3.7) 

with mean vector xμ  and variance-covariance matrix Σ .  For the case of two random 

variables X and Y the Bivariate Normal probability density function has the following form 

 

( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 22 2 2

22

2 2 2

1, exp
22

2

x y
XY

x y xyx y xy

x y yx
xy

x x y

f x y

x y yx

σ σ
σ σ σπ σ σ σ

μ μ μμ
σ

σ σ σ σ

⎧⎪= × −⎨
−− ⎪⎩

⎫⎡ ⎤− − −− ⎪⎢ ⎥− + ⎬
⎢ ⎥⎪⎣ ⎦⎭

2
y

 (3.8) 

where ,x yμ μ  are the means, 2 2,x yσ σ  are the variances of the random variables X and Y 

respectively and xyσ  is the covariance. 
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Figure 3.5 shows a 3-dimensional plot of a Bivariate Normal probability density function with 

0.8, 0.2x yμ μ= = − , 1.5, 1.2x yσ σ= =  and 0.5xyσ = −  over a range of possible values x, y of 

the random variables X and Y. 

-5

0

5

-5

0

5
0

0.05

0.1

x

Bivariate Normal Probability Density surface

y

f(x
,y

)

 
Figure 3.5  Bivariate Normal probability density surface 

Planes having values  that cut the density surface will create elliptical 

curves of intersection. 

( ), constaXYf x y = nt

)

 

The MATLAB function bivariate_normal.m was used to create the Bivariate Normal 

probability density surface of Figure 3.5.  The equation of the Bivariate Normal probability 

density function ( ,XYf x y  used in the function is a modified form of (3.8) where the 

correlation coefficient 

 xy
xy

x y

σ
ρ

σ σ
=  (3.9) 

is used and equation (3.8) becomes 
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( ) ( )

( ) ( ) ( ) ( )

22

22

2 2

1 1, exp
2 12 1

2

XY
xyx y xy

x y yx
xy

x x y

f x y

x y yx

ρπ σ σ ρ

μ μ μμ
ρ

σ σ σ σ

⎧⎪= × −⎨
−− ⎪⎩

⎫⎡ ⎤− − −− ⎪⎢ ⎥− + ⎬
⎢ ⎥⎪⎣ ⎦⎭y

 (3.10) 

 

 
function bivariate_normal(mx,my,sx,sy,sxy) 
% Function BIVARIATE_NORMAL(MX,MY,SX,SY,SXY) calculates the bivariate  
% normal density function f(x,y) of two random variables X and Y having 
% NORMAL distributions with means MX, MY, standard deviations SX, SY and 
% covariance SXY and plots the probability density surface. 
 
% calculate correlation coefficient r (rho) 
r  = sxy/(sx*sy); 
r2 = r*r; 
 
% create arrays of x and y values between -3 and 3 at 0.2 intervals 
[x,y] = meshgrid(-5:0.25:5); 
 
a = (x-mx)./sx; 
b = (y-my)./sy; 
c = a.^2 - (a.*b).*(2*r) + b.^2; 
 
% calculate the density function z = f(x,y) 
z = 1/(2*pi*sx*sy*sqrt(1-r2)).*exp(-1/(2*(1-r2)).*c); 
 
% Clear Figure 1 and plot the probability density surface 
figure(1); 
clf(1); 
box on; 
mesh(x,y,z,'EdgeColor','black'); 
% anotate the plot 
title('Bivariate Normal Probability Density surface')  
xlabel('x'); 
ylabel('y'); 
zlabel('f(x,y)'); 
 

 

3.1.4. Expectations 

{ }The expectation E X  of a random variable X is defined as the average value Xμ  of the 

variable over all possible values.  It is computed by taking the sum of all possible values of 

X x=  multiplied by its corresponding probability.  In the case of a discrete random variable 

the expectation is given by 

  (3.11) { } ( )
1

N

X k
k

E X x P xμ
=

= = ∑ k

Equation (3.11) is a general expression from which we can obtain the usual expression for the 

arithmetic mean 
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1

1 N

k
k

x
N

μ
=

= ∑  (3.12) 

If there are N possible values kx  of the random variable X, each having equal probability 

( ) 1kP x N=  (which is a constant), then the expectation computed from (3.11) is identical to 

the arithmetic mean of the N values of kx  from (3.12). 

 

In the case of a continuous random variable the expectation is given by 

  (3.13) { } ( )X XE X x f x dxμ
+∞

−∞

= = ∫

This relationship may be extended to a more general form if we consider the expectation of a 

function  of a random variable X whose probability density function is ( )g X ( )Xf x .  In this 

case 

  (3.14) ( ){ } ( ) ( )XE g X g x f x dx
+∞

−∞

= ∫

Extending (3.14) to the case of two random variables X and Y 

  ( ){ } ( ) ( ), , ,XYE g X Y g x y f x y dx dy
+∞ +∞

−∞ −∞

= ∫ ∫

Similarly for n random variables 

  (3.15) ( ){ } ( ) ( )1 2 1 2 1 2 1 2, , , , , , , , ,n n X nE g X X X g x x x f x x x dx dx dx
+∞ +∞ +∞

−∞ −∞ −∞

= ∫ ∫ ∫… " … … n…

x x

Expressing (3.15) in matrix notation gives a general form of the expected value of a 

multivariate function  as ( )g X

  (3.16) ( ){ } ( ) ( )E g g f d
+∞ +∞ +∞

−∞ −∞ −∞

= ∫ ∫ ∫ XX x"

where  is the multivariate probability density function. ( )fX x
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There are some rules that are useful in calculating expectations.  They are given here without 

proof but can be found in many statistical texts, e.g., Walpole, 1974.  With a and b as 

constants and X and Y as random variables 

 { }E a a=  

 { } { }E aX a E X=  

 { } { }E aX b a E X b+ = +  

 ( ) ( ){ } ( ){ } ( ){ }E g X h X E g X E h X± = ±  

 ( ) ( ){ } ( ){ } ( ){ }, , , ,E g X Y h X Y E g X Y E h X Y± = ±  

 

3.1.5. Special Mathematical Expectations 

The mean of a random variable 

  (3.17) { } ( )X E X x f x dxμ
+∞

−∞

= = ∫ X

The mean vector  of a multivariate distribution is Xm

 

( )
( )
( )

{ }

1

2

3

11

22

33

X

X
X

X

XE X
XE X

E E
XE X

μ
μ
μ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

m

###

X  (3.18) 

Xm  can be taken as representing the mean of a multivariate probability density function. 

The variance of a random variable 

  (3.19) ( ){ } ( ) ( )2 22
X X x XE X x f x dxσ μ μ

+∞

−∞

= − = −∫

The covariance between two random variables X and Y is 

  (3.20) ( ) ( ){ } ( ) ( ) ( ),XY X Y x y XYE X Y x y f x y dx dyσ μ μ μ μ
+∞ +∞

−∞ −∞

= − − = − −∫ ∫
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Equation (3.20) can be expanded to give 

 

( ) ( ){ }
{ }
{ } { } { } {
{ } { } { }
{ }
{ }

XY X Y

Y X X Y

Y X X

Y X X Y

Y X X Y X Y

X Y

E X Y

E XY X Y

E XY E X E Y E

E XY E X E Y

E XY

E XY

σ μ μ

μ μ μ μ

}Yμ μ μ

μ μ μ μ

μ μ μ μ μ μ

μ μ

= − −

= − − +

= − − +

= − − +

= − − +

= −

μ
 

If the random variables X and Y are independent, the expectation of the product is equal to the 

product of the expectations, i.e., { } { } { }E XY E X E Y= .  Since the expected values of X and Y 

are the means Xμ  and Yμ  then { } X YE XY μ μ=  if X and Y are independent.  Substituting this 

result into the expansion above shows that the covariance XYσ  is zero if X and Y are 

independent. 

 

For a multivariate function, variances and covariances of the random variables X is given by 

the matrix equation 

 [ ][ ]{ }T
XX X YE= − −X m X mΣ  (3.21) 

XXΣ  is a symmetric matrix known as the variance-covariance matrix and its general form can 

be seen when (3.21) is expanded 

 

1

2

1 2

1

2
1 2 n

n

X

X
XX X X n X

n X

X
X

E X X X

X

μ
μ

μ μ μ

μ

−⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥−⎪ ⎪⎢ ⎥ ⎡ ⎤= − −⎨ ⎬−⎣ ⎦⎢ ⎥⎪ ⎪⎢ ⎥⎪ ⎪−⎢ ⎥⎣ ⎦⎩ ⎭

"
#

Σ  

giving  (3.22) 

1 1 2 1

2 1 1 2

1 2 1

2

2

2

n

n

n n

X X X X X

X X X X X
XX

X X X X X

σ σ σ

σ σ σ

σ σ σ

⎡ ⎤
⎢ ⎥
⎢= ⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"

Σ ⎥
⎥
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3.2. Law of Propagation of Variances for Linear Functions 

Consider two vectors of random variables [ ]1 2
T

nX X X=x "  and 

[ ]1 2
T

nY Y Y=y "  that are linearly related by the matrix equation 

 = +y Ax b  (3.23) 

where A is a coefficient matrix and b is a vector of constants.  Then, using the rules for 

expectations developed above we may write an expression for the mean  using Ym (3.18) 

 

{ }
{ }
{ } { }
{ }

Y

X

E

E

E E

E

=

= +

= +

= +

= +

m y

Ax b

Ax b

A x b
Am b

 

Using (3.21), the variance-covariance matrix yyΣ  is given by 

 

( ) ( ){ }
( ) ( ){ }
( ) ( ){ }
( ) ( )( ){ }
( ) ( ){ }
( ) ( ){ }

T

yy y y

T
x x

T
x x

T
x x

T T
x x

T T
x x

T
xx

E

E

E

E

E

E

= − −

= + − − + − −

= − −

= − −

= − −

= − −

=

y m y m

Ax b Am b Ax b Am b

Ax Am Ax Am

A x m A x m

A x m x m A

A x m x m A

A A

Σ

Σ

 

or 

 If = +y Ax b  and y and x are random variables linearly related then 

  (3.24) T
yy xx= A AΣ Σ

Equation (3.24) is known as the Law of Propagation of Variances. 
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Using the relationships previously established between variance-covariance matrices and 

cofactor matrices, i.e., , the Law of Propagation of Variances may also applies to 

cofactor matrices 

2
0σ= QΣ

 If = +y Ax b  and y and x are random variables linearly related then 

  (3.25) T
yy xx=Q AQ A

3.3. Law of Propagation of Variances for Non-Linear Functions 

In many practical applications of variance propagation the random variables in x and y are 

nonlinearly related, i.e., 

 ( )f=y x  (3.26) 

In such cases, we can expand the function on the right-hand-side of (3.26) using Taylor's 

theorem. 

 

For a non-linear function of a single variable Taylor's theorem may be expressed in the 

following form 

 

( ) ( )

( )
( )

2 32 3

2 3

11

1

( ) ( ) ( )
2! 3!

1 !

a a a
nn

nn
a

x a x adf d f d ff x f a x a
dx dx dx

x ad f R
dx n

−−

−

− −
= + − + + +

−
+ +

−

"
 (3.27) 

where nR  is the remainder after n terms and lim 0nn
R

→∞
=  for ( )f x  about x a=  and 

2

2,
a a

df d f
dx dx

 etc are derivatives of the function ( )f x  evaluated at x a= . 

 

For a non-linear function of two random variables, say ( ),f x yφ = , the Taylor series 

expansion of the function φ  about x a=  and y b=  is 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

, ,

2 2
2 2

2 2
, ,, ,

,

1
2!

a b a b

a b a ba b a b

f ff a b x a y b
x y

f f f fx a y b x a y b
x y x y

φ ∂ ∂
= + − + −

∂ ∂

⎧ ⎫∂ ∂ ∂ ∂⎪ ⎪+ − + − + − −⎨ ⎬∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭
"+

(3.28) 
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where ( , )f a b  is the function φ  evaluated at x a=  and y b= , and 
2

2
, , ,

, ,
a b a b a b

f f f
x y x
∂ ∂ ∂
∂ ∂ ∂

 

etc are partial derivatives of the function φ  evaluated at x a=  and y b= . 

 

Extending to n random variables, we may write a Taylor series approximation of the function 

 as a matrix equation ( )f x

 ( ) ( ) ( )
0

0 0 higher order termsff f ∂
= + − +

∂ x

x x x x
x

 (3.29) 

where  is the function evaluated at the approximate values  and ( )0f x 0x
0

f∂
∂ xx

 are the partial 

derivatives evaluated at approximations . 0x

 

Replacing  in ( )f x (3.26) by its Taylor series approximation, ignoring higher order terms, 

gives 

 ( ) ( ) (
0

0 ff f ∂
= = + −

∂ x
)0y x x x x

x
 (3.30) 

Then, using the rules for expectations 

 

{ }

( ) ( )

( ){ } ( )

( ) ( ){ }

( ) { } { }( )

( ) ( )

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

y

x

E

fE f

fE f E

ff E

ff E E

ff

=

⎧ ⎫∂
= + −⎨ ⎬∂⎩ ⎭

⎧ ⎫∂
= + −⎨ ⎬∂⎩ ⎭

∂
= + −

∂

∂
= + −

∂

∂
= + −

∂

x

x

x

x

x

m y

x x x
x

x x
x

x x x
x

x x
x

x m x
x

x

x
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And 

 

( ) ( ) ( ) ( )

( )

( )

0 0

0

0 0 0
y x

x

yx x

f ff f

f

⎡ ⎤ ⎡∂ ∂
− = + − − + −⎢ ⎥ ⎢∂ ∂⎣ ⎦ ⎣

∂
=
∂

=

x x

x

0 ⎤
⎥
⎦

y m x x x x m x
x x

x m
x

J x m

−

−

 (3.31) 

yxJ  is the (m,n) Jacobian matrix of partial derivatives, noting that y and x are (m,1) and (n,1) 

vectors respectively 

 

1 1 1 2 1

2 1 2 2 2

1 2

n

n
yx

m m m n

y x y x y x
y x y x y x

y x y x y x

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢=
⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

J

"
"

# #
"

⎥  (3.32) 

Using (3.21), the variance-covariance matrix yyΣ  is given by 

 

( ) ( ){ }
( )( ) ( )( ){ }
( ) ( ){ }
( ) ( ){ }

T

yy y y

T

yx x yx x

T T
yx x x yx

T T
yx x x yx

T
yx xx yx

E

E

E

E

= − −

= − −

= − −

= − −

=

y m y m

J x m J x m

J x m x m J

J x m x m J

J J

Σ

Σ

 

Thus, in a similar manner to above, we may express the Law of Propagation of Variances for 

non-linear functions of random variables as 

 If ( )f=y x  and y and x are random variables non-linearly related then 

  (3.33) T
yy yx xx yx= J JΣ Σ

 

This rule also applies to cofactor matrices 

 If ( )f=y x  and y and x are random variables non-linearly related then 

  (3.34) T
yy yx xx yx=Q J Q J
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3.4. The Special Law of Propagation of Variances 

The Law of Propagation of Variances is often expressed as an algebraic equation.  For 

example, if z is a function of two random variables x and y, i.e., ( ),z f x y=  then the variance 

of z is 

 
22

2 2 2 2z x y
z z z
x y x xy

z
y

σ σ σ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
σ

)

 (3.35) 

Equation (3.35) can be derived from the general matrix equation (3.33) in the following 

manner.  Let  be written as ( ,z f x y= ( )f=y x  where [ ]z=y , a (1,1) matrix and 
x
y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x  

is a (2,1) vector.  The variance-covariance matrix of the random vector x is 
2

2
x xy

xx
xy y

σ σ
σ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ , 

the Jacobian yx
z z
x y

⎡∂ ∂
= ⎢∂ ∂⎣ ⎦

J ⎤
⎥  and the variance-covariance matrix yyΣ  which contains the 

single element 2
zσ  is given by 

 
2

2
2

x xy
yy z

xy y

z
xz z

x y z
y

σ σ
σ

σ σ

∂⎡ ⎤
⎢ ⎥⎡ ⎤ ∂⎡ ⎤∂ ∂ ⎢ ⎥⎡ ⎤= = ⎢ ⎥⎢ ⎥⎣ ⎦ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥∂⎣ ⎦

Σ  

Expanding this equation gives (3.35). 

 

In the case where the random variables in x are independent, i.e., their covariances are zero; 

we have the Special Law of Propagation of Variances.  For the case of  where the 

random variables x and y are independent, the Special Law of Propagation of Variances is 

written as 

( ,z f x y= )

 If ( ),z f x y=  and x and y are independent random variables then 

 
22

2 2
z x

z z
x y

2
yσ σ ⎛ ⎞∂ ∂⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

σ  (3.36) 
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3.5. Applications of Propagation of Variances 

Propagation of variances, using either the Law of Propagation of Variances for linear 

functions, equations (3.24) or (3.25) and non-linear functions, equations (3.33) or (3.34), or 

the Special Law of Propagation of Variances, equation (3.36) where the variables are 

independent are important "tools" for assessing the precision of computed quantities arising 

from measurements.  Implicit in every application of variance propagation is an a priori 

knowledge of the precision of the measurements.  For example, if quantities are derived from 

Total Station EDM distances, then some knowledge of the precision of those distances is 

assumed; if height differences are computed from a combination of Total Station EDM 

distances and zenith angles, then the precisions of distances and zenith angles is assumed.  

These a priori precision estimates may come from information supplied by the equipment 

manufacturer, statistical analysis of observations, prior knowledge or simply educated 

guesses.  Whatever the source of knowledge, it is assumed that these precisions are known 

before any variance propagation is made.  The following sections set out some useful 

techniques that are applicable to many surveying operations. 

 

3.5.1. Variances of Total Station Horizontal Distances and Height Differences 

Total Stations are modern surveying instruments combining an electronic theodolite (for 

angle measurement) and an EDM (for distance measurement to a reflecting prism).  EDM is 

an abbreviation of Electronic Distance Measurement.  The primary Total Station 

measurements are horizontal and vertical circle readings α  and β  respectively (from which 

angles may be obtained) and slope distances D.  Total Stations have "on board" computers 

and may display (at the push of a button) computed quantities such as vertical height 

differences  and horizontal distances H, between the instrument and the prism (the 

sighting target). 

V±

 

A vertical circle reading β  made with a Total Station is a clockwise angle from the zenith 

(defined by the vertical axis of the Total Station) measured in a vertical plane.  This vertical 

plane is swept out by the telescope rotating about the Total Station's horizontal axis (the 

trunnion axis).  The horizontal distance H and the vertical component V±  of a measured 

slope distance S are 
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 sinH D β=  

 cosV D β=  

H and V are functions of D and β  which we may write as ( ),H H D β=  and ( ),V V D β= .  

Treating H, V, D and β  as random variables and assuming that D and β  are independent the 

Special Law of Propagation of Variances (3.36) can be used to compute the variances of H 

and V 

 ( ) (
22

2 2 2 2 2 2 2sin cosH D D
H H D
D )2

β βσ σ σ β σ β σ
β

⎛ ⎞∂ ∂⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

 ( ) (
22

2 2 2 2 2 2 2cos sinV D D
V V D
D )2

β βσ σ σ β σ β σ
β

⎛ ⎞∂ ∂⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 

2 ,D
2
βσ σ  are the variances of the slope distance and zenith angle respectively.  For any 

properly calibrated Total Station EDM and prism combination, the standard deviation of a 

distance can be expressed in the form ppmD x yσ = +  (ppm is parts per million) and the 

standard deviation of a zenith angle as seconds of arcxβσ = . 

 

As an example: say D = 60.000 m, 85 36 00β ′ ′′= D  and 8 mm + 5 ppm 0.0083 mDσ = = , 

; the variances in H and V are 510 4.8481 10  radiansβσ
−′′= = ×

 ( ) ( ) ( ) ( ) ( )22 2 2 22 5

5 2

0.9971 0.0083 60 0.0767 4.8418 10

6.85 10  m
Hσ −

−

= +

= ×

×  

 ( ) ( ) ( ) ( ) ( )22 2 2 22 5

6 2

0.0767 0.0083 60 0.9971 4.8418 10

8.82 10  m
Vσ

−

−

= +

= ×

×  

The standard deviations are of H and V are 

 56.85 10 0.0083 mHσ −= × =  

 68.82 10 0.0030 mVσ
−= × =  

It is interesting to note that the computed quantities H and V are not independent, even though 

they have been computed from independent quantities.  This can be seen by computing the 
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variances in the following manner.  We may write the computation of the components H and 

V from the observations D and β  as the vector equation 

 ( )f=y x  

H
V
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

y , 
D
β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x  and y and x are non-linearly related.  Using (3.33) we may write 

( )

2

2

2

2

2

2

2

0
0

0sin cos sin cos
0cos sin cos sin

0.0083 00.9971 4.6031
0.0767 59.8232 0 4

TH HV
yy yx xx yx

HV V

D

D

H D H H D V D
V D V H V

D
D D D

β

β

σ σ
σ σ

σβ
σβ β β

σβ β β β
σβ β β β

⎡ ⎤
= =⎢ ⎥
⎣ ⎦

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

J JΣ Σ

( )25

5 6

6 6

0.9971 0.0767
4.6031 59.8232.8481 10

6.85 10 4.62 10
4.62 10 8.82 10

−

− −

− −

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥−⎢ ⎥× ⎣ ⎦⎣ ⎦
⎡ ⎤× ×

= ⎢ ⎥× ×⎣ ⎦
 

The diagonal elements of  are  and  which are 

the same values as computed above and the off-diagonal elements are the covariance 

.  These elements, which are non-zero, indicate that computed quantities 

are correlated. 

yyΣ 2 5 26.85 10  mHσ −= × 2 6 28.82 10  mVσ
−= ×

264.62 10  mHVσ −= ×
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3.5.2. Variances of Height Differences from Spirit Levelling 

 

level line

Δh

rP rQdd

st
af

f

P

Q

 
 

Figure 3.1 

 

Figure 3.1 shows a schematic diagram of a spirit level and a single height difference PQhΔ  

between positions of the levelling staves at P and Q.  The backsight and foresight staff 

readings are Pr  and  and the length of the sights to the levelling staff are the same and equal 

to d.  The height difference is 

Qr

 PQ Ph r rQΔ = −  

Considering the backsight and foresight staff readings to be independent and of equal 

precision, the Special Law of Propagation of Variances (3.36) gives the variance of a single 

height difference from spirit levelling as 

 
22

2 2 2 2 2 2
P Q P Qh r r r r

P Q

h h
r r

2
rσ σ σ σ σΔ

⎛ ⎞⎛ ⎞∂Δ ∂Δ
= + = + =⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

σ  (3.37) 

rσ  is the standard deviation of a staff reading. 

 

Suppose a flight of levels is run between two points A and B that are a distance D apart and 

that at every set up of the level, the backsight and foresight distances are the same and equal 

to d and the staff readings are all of equal precision rσ .  There will be 2n D d=  set ups and 
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the height difference ABHΔ  will be the sum of the individual height differences of the level 

run 

  1 2AB nH h hΔ = Δ + Δ + + Δ" h

2

Considering each  to be independent and of equal precision, the variance of the total 

height difference  is given by the Special Law of Propagation of Variances 

hΔ

ABHΔ

 
1 2

2 2 2 2
AB nH h h h n hσ σ σ σ σΔ Δ Δ Δ= + + + =" Δ  (3.38) 

It is usual practice in spirit levelling to "close the level run" by returning to the start, therefore 

the mean height difference of a closed level run (or a levelling loop) is 

 
2

AB BA
MEAN

H HH Δ + Δ
Δ =  

Again, considering  and  to be independent and of equal precision, the Special 

Law of Propagation of Variances gives, bearing in mind 

ABHΔ BAHΔ

(3.37) and (3.38) the variance of the 

mean height difference of closed level run as 

 2 2 2 2 21 1 1
4 4 2 2MEAN AB BA

2
H H H H h

n n rσ σ σ σ σΔ Δ Δ Δ Δ= + = = = σ  (3.39) 

2n D d=  is the number of set ups in the level run between A and B, that are distance D apart 

(d is the length of the backsight/foresight distance) hence the variance in the mean height 

difference is proportional D.  Since weights are inversely proportional to variances, it is 

common to express precisions of spirit levelled height differences as weights that are defined 

as being inversely proportional to distances. 

 1
distanceHwΔ ∝  (3.40) 
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3.5.3. Variance of Trigonometric Heights 

 

A

B

C

β

α

γ

δ

c

b

a

C′

C″

B′A′

 
 

Figure 3.2 

 

Figure 3.2 is a schematic diagram of vertical angle observations γ  and δ  at A and B to a 

distant point C.  Horizontal angles α  and β  are measured at A and B and the horizontal 

distance c between A and B is measured.  AC B′ ′  and A C B′ ′′  are horizontal planes.  If the 

heights of A and B are known then the height of C can be computed by plane trigonometry.  

Heights computed in this manner are known as trigonometric heights. 

 

If the observations, angles , , ,α β γ δ  and distance c, have particular precisions then the 

computed height of C will also have a precision that can be determined by propagation of 

variances.  The method of propagation will be demonstrated by the following example. 
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Example. Referring to Figure 3.2, the following observations and standard deviations are 

known together with the Reduced Levels of A and B 

  

75 33 25 10 105.450 m

87 40 00 20 92.330 m

10 42 10 15

11 28 05 30
505.450m 0.050 m

A

B

c

RL

RL

c

α

β

γ

δ

α σ

β σ

γ σ

δ σ
σ

′ ′′ ′′= = =

′ ′′ ′′= = =

′ ′′ ′′= =

′ ′′ ′′= =
= =

D

D

D

D

Method of Computation of RL of C 

 

(i) Compute sides a and b using the Sine Rule: 

 
( )( ) ( )sin sin sinsin 180

a b c c
α β αα β
= = =

+− + β
 

 giving 

 
( )
sin 1695.816217 m

sin
ca α
α β

= =
+

 (3.41) 

 
( )
sin 1749.707936 m

sin
cb β
α β

= =
+

 (3.42) 

(ii) Compute the mean RL of C 

 
 from :   tan 436.1486 m
 from : tan 436.3632 m

C C A

C C B

RL A RL RL b
RL B RL RL a

γ
δ

= + =
= + =

 

 tan tan 436.256 m
2

A B
C

RL RL b aRL γ δ+ + +
= =  (3.43) 

 

Method of Computation of Variance of RL of C 

 

(i) Inspection of equations (3.41) and (3.42) shows that a and b are non-linear functions of 

the variables ,α β  and c which we may write as 

 ( )f=y x  
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where [ ]Ta b=y , [ ]Tcα β=x  and y and x are non-linearly related.  Using (3.33) 

we may write 

  (3.44) T
yy yx xx yx= J JΣ Σ

 where , 
2

2
a ab

yy
ba b

σ σ
σ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Σ yx

a a a
b b b

α β
α β

c
c

∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤
= ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

J  and 

2

2

2

0 0
0 0
0 0

xx

c

α

β

σ
σ

σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  

noting that the observations ,α β  and c are considered as independent random 

variables, hence xxΣ  is diagonal.  The elements of the Jacobian  are the partial 

derivatives of equations 

yxJ

(3.41) and (3.42); they are obtained as follows. 

 

(ii) partial derivative a α∂ ∂ : 

 Using the rule for derivatives 
( ) ( )

2

v du dx u dv dxd u
dx v v

−⎛ ⎞ =⎜ ⎟
⎝ ⎠

 and the relation 

( )sin cosd
d

α β α
α

+ =  we may write 

 

( ) ( )
( )

( ) ( )
( )

2

2

sin cos sin cos
sin

sin cos cos sin
sin

c ca

c

α β α α α β
α α β

α β α α β α
α β

+ − +∂
=

∂ +

+ − +⎡ ⎤⎣ ⎦=
+

 

 Using the trigonometric function ( )sin sin cos cos sinA B A B A B− = −  where 

A α β= +  and B α=  then A B β− =  and we may write 

 
( )2

sin
sin

a c β
α α β
∂

=
∂ +

 

 Noting that 
( )
sin

sin
cb β
α β

=
+

 the partial derivative is 

 
( )sin

a b
α α β
∂

=
∂ +

 (3.45) 
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(iii) partial derivative a β∂ ∂ : 

 Similarly to the above derivation, we may write 

 

( )( ) ( )
( )

( )
( )

2

2

sin 0 sin cos
sin

sin cos
sin

ca

c

α β α α
β α β

α α β
α β

+ − +∂
=

∂ +

− +
=

+

β

 

Noting that 
( )
sin

sin
c aa
α β

=
+

 and that 
( )
( ) ( )

cos 1
sin tan

α β
α β α
+

=
+ + β

 the partial derivative is 

 
( )tan

a a
β α β
∂ −

=
∂ +

 (3.46) 

 

(iii) partial derivative a c∂ ∂ : 

 
( )
sin

sin
a
c c

aα
α β

∂
= =

∂ +
 (3.47) 

 

(iv) partial derivatives , ,b b b cα β∂ ∂ ∂ ∂ ∂ ∂  

 Similarly to the above derivations 

 
( )tan

b b
α α β
∂ −

=
∂ +

 (3.48) 

 
( )sin

b a
β α β
∂

=
∂ +

 (3.49) 

 
( )
sin

sin
b
c c

bβ
α β

∂
= =

∂ +
 (3.50) 

(v) Substitute numeric values into the equations for the partial derivatives and set the 

elements of the Jacobian  yxJ

 
( ) ( )

( ) ( )

sin tan 6061.961236 5625.191025 3.355062
5803.955218 5875.250353 3.461684

tan sin

yx

b a a
c

b a b
c

α β α β

α β α β

−⎡ ⎤
⎢ ⎥+ + ⎡ ⎤⎢ ⎥= = ⎢ ⎥−⎢ ⎥ ⎣ ⎦
⎢ ⎥+ +⎢ ⎥⎣ ⎦

J  
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(vi) Substitute numeric values into the elements of the variance matrix xxΣ  

 

( )
( )

( )

25
2

22 5

2 2

4.8481 10 0 00 0
0 0 0 9.6963 10 0
0 0 0 0 0.050

xx

c

α

β

σ
σ

σ

−

−

⎡ ⎤×⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= = ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

Σ  

 

(vii) Perform the matrix multiplications in (3.44) to give the variance-covariance matrix of 

the computed distances a and b 

 
2

2

0.412012 0.422455
0.422455 0.433671

a ab
yy

ba b

σ σ
σ σ
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

Σ  (3.51) 

 Note that the off-diagonal terms are not zero, indicating that the computed quantities 

are correlated.  The leading-diagonal elements are the variances of a and b, hence the 

standard deviations are 

 
0.412012 0.642 m

0.433671 0.659 m
a

b

σ

σ

= =

= =
 

 

(viii) Inspection of equation (3.43) shows that the mean RL of C is non-linear function of the 

correlated variables a, b and the independent variables ,γ δ  that we may write as 

 ( )f=y x  

[ ]CRL=y , [ ]Ta b γ δ=x  and y and x are non-linearly related.  Using (3.33) we 

may write 

  (3.52) T
yy yx xx yx= J JΣ Σ

 where , 2
Cyy RLσ⎡ ⎤= ⎣ ⎦Σ [ ]yx C C C CRL a RL b RL RLγ δ= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂J  and 

2

2

2

2

0 0
0 0

0 0 0
0 0 0

a ab

ba b
xx

γ

δ

σ σ
σ σ

σ
σ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Σ  
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Note that  is a matrix containing a single element only, the variance of the mean RL 

of C and 

yyΣ

xxΣ  is a partitioned matrix where the upper-left part is the variance-covariance 

matrix in equation (3.51) and the lower-right part contains the variances of the vertical 

angles γ  and δ .  The Jacobian  is a row-vector containing the partial derivatives of 

equation 

yxJ

(3.43) that are given as follows. 

 

(ix) partial derivatives , , ,C C C CRL a RL b RL RLγ δ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 Noting that 2
2

1tan sec
cos

d x x
dx x

= =  the partial derivatives are 

 2 2

tan tan, , ,
2 2 2cos 2

C C C CRL RL RL RLb a
a b cos

δ γ
γ γ δ

∂ ∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂ δ
 

 

(x) Substitute numeric values into the equations for the partial derivatives and set the 

elements of the Jacobian  yxJ

 

[ ]

2 2

tan tan
2 2 2cos 2cos

0.101436 0.094501 906.105346 882.805418

yx
b aδ γ

γ δ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

=

J
 

 

(xi) Substitute numeric values into the elements of the variance matrix xxΣ  

 ( )
( )

2

2

252

2 24

0.412012 0.422455 0 0
0 0

0.422455 0.433671 0 0
0 0

0 0 7.2722 10 00 0 0
0 0 0 0 0 0 1.4544 10

a ab

ba b
xx

γ

δ

σ σ
σ σ

σ
σ

−

−

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⎢ ⎥×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ×⎢ ⎥⎣ ⎦

Σ  

 

(xii) Perform the matrix multiplications in (3.52) to give the variance-covariance matrix of 

the computed mean RL of C. 

 [ ]0.037040yy =Σ  
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Hence, the variance of the mean RL of C is 

  2 20.037040 m
CRLσ =

 and the standard deviation of the mean RL of C is 

 0.037040 0.192 m
CRLσ = =  

 

3.6. Propagation of Variances of Multiple Functions of Random Variables 

In some applications of surveying and least squares, we must deal with multiple functions of 

random variables that may be correlated.  To handle these cases, Mikhail (1976, pp.83-87) 

develops general rules and techniques that are repeated in the following sections.  Note that 

cofactor matrices Q replace variance-covariance matrices Σ  in the following developments. 

 

Consider  and  to be two correlated vectors with cofactor matrices ( ),1nx ( ),1mt ,xx xQ Q t  and .  ttQ

xtQ  is an (n,m) crosscofactor matrix containing estimates of covariances between the 

elements of the x and t vectors.  Two other vectors ( ),1qy  and  are functions of x and t (y 

is functionally independent of t and z of x). 

( ),1pz

 
( )
( )

y

z

=

=

y x

z t
 (3.53) 

The Jacobians of these functions are 

 
yx

zt

∂
=
∂
∂

=
∂

yJ
x
zJ
t

 (3.54) 

Letting ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

y
r

z
 and  equation ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
s

t
(3.53) can be written as 

 ( )f=r s  (3.55) 

The Law of Propagation of Variances (3.34) can be applied to give 

  (3.56) T
rr rs ss rs=Q J Q J
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with the Jacobian 

 yx yt yx
rs

zx zt zt

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

J J J 0
J

J J 0 J
 (3.57) 

Note that  and  are zero since y is independent of t and z is independent of x. ytJ zxJ

Equation (3.56) can be expanded to give 

 

T
yy yz yx xx xt yx

zy zz zt tx tt zt

T
yx xx xt yx

T
zt tx tt zt

T T
yx xx yx yx xt zt

T T
zt tx yx zt tt zt

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Q Q J 0 Q Q J 0
Q Q 0 J Q Q 0 J

J 0 Q Q J 0
0 J Q Q 0 J

J Q J J Q J
J Q J J Q J

 

From this expanded equation, we may write the following symbolic equation and four general 

relationships 

 
( )
( )If    and   and  are correlated

y
z

⎡ ⎤⎡ ⎤
== ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

y x
x tz t

 

   (3.58) 

T
yy yx xx yx

T
yz yx xt zt

T
zy zt tx yz

T
zz zt tt zt

=

=

=

=

Q J Q J

Q J Q J

Q J Q J

Q J Q J

The cofactor matrices where the subscripts are different letters, i.e., xtQ , ,  and  

are crosscofactor matrices and their form is easily constructed, for example 

txQ yzQ zyQ

 
1 1 1 2 1

1 2

, , ,

,
, , ,

n

m m m

x t x t x t

xt
m n

nx t x t x t

q q q

q q q

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Q

"

#
"

 (3.59) 

This directly leads to the fact that crosscofactor matrices are not necessarily square and 

symmetric, as cofactor matrices are, and that 

 
,

T
xt t

m n
=Q Q x  
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3.6.1. Symbolic Multiplication in Propagation Using Matrices 

To assist the practitioner in variance propagation (or cofactor propagation) of linear and non-

linear functions of random variables a technique known as symbolic multiplication can be 

used.  This mnemo-technical rule was originally devised by Tienstra (1966) to obtain 

covariances of random variables related by systems of linear (or linearized) equations.  His 

rule, developed before the extensive use of matrix algebra, can be employed with matrix 

equations in the following manner.  For example, for linear functions 

 = +y Ax a  (a) 

 = +z Bt b  (b) 

The constant vectors a and b play no part in variance propagation and can be ignored, and the 

crosscofactor matrix  is yzQ

  (c) T
yz xt=Q AQ B

Equation (c) can be obtained by symbolic multiplication by: 
 

 (i) writing the cofactor matrix Q on the left-hand-side of the equals sign with 

subscripts y and z representing the vectors y and z on the left-hand-sides of 

equations (a) and (b) in the order of (a) first and (b) second, then 

 (ii) writing the coefficient matrix of the random variable in equation (a) on the right-

hand-side of the equals sign, then 

 (iii) multiplying by the cofactor matrix Q with the subscripts x and t representing the 

random vectors x and t on the right-hand-sides of equations (a) and (b) in the 

order of (a) first and (b) second, then 

 (iv) multiplying by the transpose of the coefficient matrix of the random variable on 

the right-hand-side of equation (b). 
 

Note the in the case of non-linear functions, the coefficient matrices  and  replace A 

and B respectively, and equation (c) becomes identical to the 2nd equation of 

yxJ ztJ

(3.58). 
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3.6.2. Further Remarks on Propagation Using Matrices 

The rules and techniques of propagation of variances (and cofactors) given in the preceding 

sections allow for propagation of variances through several transformations.  These 

propagations can be carried out in two ways, (i) substitution and (ii) stepwise.  To 

demonstrate these we consider the following three relations 

 
= +
= +
= +

y Ax a
z By b
r Cz c

 (3.60) 

Let the random vector x be known, with its cofactor matrix xxQ  and it is desired to obtain the 

cofactor matrices of z and r.  The vectors a, b and c contain constants and A, B and C are 

coefficient matrices. 

 
Propagation Through Substitution 

We express z and r in terms of x by substitution: 

 

( )
( ) ( )
( )

( ) ( )
( )( ) ( )
( ) (

= +

= + = + +

= + +

= + = + +

= + +

= + + +

)= + + +

y Ax a
z By b B Ax a b

BA x Ba b

r Cz c C By b c

CB y Cb c

CB Ax a Cb c

CBA x CBa Cb c

 

Noting that the last terms in the equations for z and r evaluate to vectors, say d and e we may 

rewrite the equations and apply propagation using symbolic multiplication to give 

  (3.61) 

( ) ( ) ( )
( ) ( ) ( )

( )
( )

( ) ( )

T
yy xx

T T T
zz xx xx

T T T T
rr xx xx

T T T
yz xx xx

T T T T
yr xx xx

T T T T
zr xx xx

= + =

= + = =

= + = =

= =

= =

= =

y Ax a Q AQ A

z BA x d Q BA Q BA BAQ A B

r CBA x e Q CBA Q CBA CBAQ A B C

Q AQ BA AQ A B

Q AQ CBA AQ A B C

Q BA Q CBA BAQ A B C
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Stepwise Propagation 

The same result in equations (3.61) can be obtained by applying propagation in steps as 

follows: 

  (3.62) 

T
yy xx

T T T
zz yy xx

T T
rr zz xx

T
yz xy

T
yr xz

T
zr yz

= + =

= + = =

= + = =

=

=

=

y Ax a Q AQ A

z By b Q BQ B BAQ A B

r Cz c Q CQ C CBAQ A B C

Q AQ B

Q AQ C

Q BQ C

T T

The last three (crosscofactor) relations of equations (3.62) do not correspond to those in 

equations (3.61), particularly because of the absence of the matrices ,xy xQ Q z  and .  

However, these matrices can be derived if equations 

yzQ

(3.60) are supplemented by simple 

identities  and =x Ix =y Iy  giving the following three pairs of equations from which the 

matrix relationships can be obtained by symbolic multiplication. 

  (3.63) 

T T
xy xx xx

T T
xz xy xx

T
yz yy

= =

= +

= =

= +

= =

= +

x Ix Q IQ A Q A

y Ax a

x Ix Q IQ B Q A B

z By b

y Iy Q IQ B
z By b

T

=

=

Substituting these relations into the last three relations in (3.62) leads directly to equations 

(3.61).  This demonstrates that propagation through substitution is equivalent to stepwise 

propagation. 
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4. APPROXIMATE VALUES 

In many least squares problems, the unknown quantities being sought may be quite large 

numbers and or the coefficients of these quantities may be large numbers.  This can lead to 

numerical problems in the formation of normal equations where large numbers are multiplied 

and summed.  To overcome this problem, approximate values of the unknown quantities may 

be used and small, unknown corrections to the approximate values become the quantities 

being sought. 

 

In general, we denote unknown values as x, approximate values as 0x  and small corrections 

as xΔ  or xδ  and 

 0x x xδ= +  (4.1) 

In the case of a vector of unknown quantities x we have a vector of approximate values  

and a vector of small corrections 

0x

δ x  and 

 0 δ= +x x x  (4.2) 

The use of approximate values can best be explained by example and the following sections 

contain worked examples of some simple least squares problems that demonstrate the use of 

approximate values. 

 

4.1. LEVEL NET ADJUSTMENT 

The diagram below shows a level network of height differences observed between the fixed 

stations A (RL 102.440 m) and B (RL 104.565 m) and "floating" stations X, Y and Z whose 

Reduced Levels (RL's) are unknown.  The arrows on the diagram indicate the direction of 

rise.  The Table of Height differences shows the height difference for each line of the network 

and the distance (in kilometers) of each level run. 
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⊗⊗

•

•

•

1

6

5
7

3

4

2

X

B
Y

Z

A

 

Line Height Diff Dist (km) 
1 6.345 1.7 
2 4.235 2.5 
3 3.060 1.0 
4 0.920 3.8 
5 3.895 1.7 
6 2.410 1.2 
7 4.820 1.5 

 
 

 

The method of Least Squares can be used to determine the best estimates of the RL's of X, Y 

and Z bearing in mind that the precision of the observed height differences is inversely 

proportional to the distance of the level run. 

The observation equation for the RL's of two points P and Q connected by an observed spirit 

levelled height difference PQHΔ  can be written as 

 PQ PQP H v Q+ Δ + =  (4.3) 

where P and Q are the RL's of points P and Q and PQv  is the residual, a small unknown 

correction to the observed height difference.  If the RL's of P and Q are unknown but have 

approximate values, say 0P P Pδ= +  and 0Q Q Qδ= +  we may write a general observation 

equation for an observed height difference as 

 0 0
PQ PQP P H v Q Qδ δ+ + Δ + = +  (4.4) 

Using this general observation equation we may write an equation for each observed height 

difference 

 

0
1 1

0
2 2

0
3 3

0
4 4

0
5 5

0 0
6 6

0 0
7 7

A H v X X

B H v X X

Z Z H v B

Z Z H v A

A H v Y

Y Y H v X

Y

X

Z Z H v Y Y

δ

δ

δ

δ

δ

δ δ

δ δ

+Δ + = +

+Δ + = +

+ +Δ + =

+ +Δ + =

+Δ + = +

+ +Δ + = +

+ + Δ + = +
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Rearranging these equations so that all the unknown quantities are on the left-hand-side of the 

equals sign and all the known quantities are on the right-hand-side gives 

 

0
1 1

0
2 2

0
3 3

0
4 4

0
5 5

0 0
6 6

0 0
7 7

v X X A H

v X X B H

v Z B Z

v Z A Z

v Y Y A

v X Y X Y H

v Y Z Y Z

δ

δ

δ

δ

δ

δ δ

δ δ

− = −

− = −

H

H

H

H

−Δ

−Δ

+ = − −Δ

+ = − −Δ

− = − −Δ

− + = − −Δ

− + = − −Δ

 

The approximate RL's of the unknown points X, Y and Z can be determined from the RL's of 

A and B and appropriate height differences 

  

0
1

0
5

0
4

108.785 m

106.335 m

101.520 m

X A H

Y A H

Z A H

= + Δ =

= + Δ =

= − Δ =

Writing these equations in the standard form + =v Bx f  gives 

 

( )
( )
( )
( )
( )
( )
( )

0
1

01
2

2 0
3

3
0

4 4

05
5

6 0 0
6

7
0 0

7

1 0 0 0.000
1 0 0 0.015
0 0 1
0 0 1
0 1 0
1 1 0
0 1 1

X A H
v X B H
v

B Z Hv X
v Y A Z H
v Z Y A H
v

X Y Hv
Y Z H

δ
δ
δ

⎡ ⎤− − Δ
⎢ ⎥−⎡ ⎤ ⎡ ⎤ ⎢ ⎥− − Δ⎢ ⎥ ⎢ ⎥− −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − Δ⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ = =− − Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎢ ⎥− − Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − Δ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦ ⎢ ⎥
⎢ ⎥− − Δ⎣ ⎦

0.015
0.000
0.000
0.040
0.005

⎡ ⎤
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

The weight matrix for the adjustment is 

 
[ ]

1 1 1 1 1 1 1diag
1.7 2.5 1 3.8 1.7 1.2 1.5

diag 0.5882 0.4000 1.0000 0.2632 0.5882 0.8333 0.6667

⎡ ⎤= ⎢ ⎥⎣ ⎦
=

W
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The least squares solution for the vector of corrections x can be obtained from the MATLAB 

function least_squares.m with the following data file c:\Temp\Level_Net_Data.dat 

 
% Data file for Level Net Adjustment 
% 
%  dX   dY   dZ    f     weight 
   -1   0    0    0.000  0.5882 
   -1   0    0   -0.015  0.4000 
    0   0    1   -0.015  1.0000 
    0   0    1    0.000  0.2632 
    0  -1    0    0.000  0.5882 
   -1   1    0    0.040  0.8333 
    0  -1    1   -0.005  0.6667 

 
Running the program from the MATLAB command window created the following output file 
c:\Temp|Level_Net_Data.out 

 
 
 
Least Squares Adjustment of Indirect Observations 
 
Input Data 
 
Coefficient matrix B of observation equations v + Bx = f 
   -1.0000    0.0000    0.0000 
   -1.0000    0.0000    0.0000 
    0.0000    0.0000    1.0000 
    0.0000    0.0000    1.0000 
    0.0000   -1.0000    0.0000 
   -1.0000    1.0000    0.0000 
    0.0000   -1.0000    1.0000 
 
Vector of numeric terms f and weights w of observation equations v + Bx = f 
    0.0000      0.5882 
   -0.0150      0.4000 
   -0.0150      1.0000 
    0.0000      0.2632 
    0.0000      0.5882 
    0.0400      0.8333 
   -0.0050      0.6667 
 
Coefficient matrix N of Normal equations Nx = t 
      1.8215     -0.8333      0.0000 
     -0.8333      2.0882     -0.6667 
      0.0000     -0.6667      1.9299 
 
Vector of numeric terms t of Normal equations Nx = t 
   -0.0273 
    0.0367 
   -0.0183 
 
Inverse of Normal equation coefficient matrix 
     6.9073e-001     3.0981e-001     1.0703e-001 
     3.0981e-001     6.7720e-001     2.3394e-001 
     1.0703e-001     2.3394e-001     5.9898e-001 
 
Vector of solutions x 
   -0.0095 
    0.0121 
   -0.0053 
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Vector of residuals v 
   -0.0095 
   -0.0245 
   -0.0097 
    0.0053 
    0.0121 
    0.0184 
    0.0124 
 

 

The adjusted RL's of X, Y and Z are 

 

0

0

0

108.785 0.0095 108.776 m
106.335 0.0121 106.347 m
101.520 0.0053 101.515 m

X X X
Y Y Y
Z Z Z

δ

δ

δ

= + = − =

= + = + =

= + = − =

 

The adjusted height differences are 

 

Line Observed HΔ  Residual v Adjusted HΔ  

1 6.345 -0.0095 6.336 

2 4.235 -0.0245 4.211 

3 3.060 -0.0097 3.050 

4 0.920 0.0053 0.925 

5 3.895 0.0121 3.907 

6 2.410 0.0184 2.428 

7 4.820 0.0124 4.832 
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5. PROPAGATION OF VARIANCES APPLIED TO LEAST SQUARES 
ADJUSTMENT OF INDIRECT OBSERVATIONS 

A most important outcome of a least squares adjustment is that estimates of the precisions of 

the quantities sought, the elements of x, the unknowns or the parameters, are easily obtained 

from the matrix equations of the solution.  Application of the Law of Propagation of 

Variances demonstrates that , the inverse of the normal equation coefficient matrix is 

equal to the cofactor matrix 

1−N

xxQ  that contains estimates of the variances and covariances of 

the elements of x.  In addition, estimates of the precisions of the residuals and adjusted 

observations may be obtained.  This most useful outcome enables a statistical analysis of the 

results of a least squares adjustment and provides the practitioner with a degree of confidence 

in the results. 

 

5.1. Cofactor matrices for adjustment of indirect observations 

The observation equations for adjustment of indirect observations is given by 

 + =v B x f  (5.1) 

f is an (n,1) vector of numeric terms derived from the (n,1) vector of observations l and the 

(n,1) vector of constants d as 

 = −f d l  (5.2) 

Associated with the vector of observations l is a variance-covariance matrix  as well as a 

cofactor matrix  and a weight matrix 

l lΣ

l lQ 1
l l l l

−=W Q .  Remember that in most practical 

applications of least squares, the matrix l lΣ  is unknown, but estimated a priori by  that 

contains estimates of the variances and covariances and  where 

l lQ

2
0l l l lσ= QΣ 2

0σ  is the 

reference variance or variance factor. 

 

Note:  In the derivations that follow, the subscript "ll" is dropped from  and  l lQ l lW

 

If equation (5.2) is written as 

 ( )= − +f I l d  (5.3) 
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then (5.3) is in a form suitable for employing the Law of Propagation of Variances developed 

in Chapter 3; i.e., if = +y Ax b  and y and x are random variables linearly related and b is a 

vector of constants then .  Hence, the cofactor matrix of the numeric terms f is T
yy xx=Q AQ A

 ( ) ( )T
ff = − − =Q I Q I Q  

Thus the cofactor matrix of f is also the a priori cofactor matrix of the observations l. 

 

The solution "steps" in the least squares adjustment of indirect observations are set out 

Chapter 2 and restated as 

 

  1

ˆ

T

T

−

=

=

=
= −

= +

N B W B
t B W f
x N t
v f B x

l l v

To apply the Law of Propagation of Variances, these equations may be re-arranged in the 

form = +y Ax b  where the terms in parenthesis ( ) constitute the A matrix. 

 ( )T=t B W f  (5.4) 

 ( )1−=x N t

)

  (5.5) 

 (

1

1

1

T

T

−

−

−

= −

= −

= −

= −

v f Bx
f BN t
f BN B Wf

I BN B W f  (5.6) 

 ( )

ˆ = +
= + −
= −

= − +

l l v
l f Bx
d Bx

B x d  (5.7) 

Applying the Law of Propagation of Variances to equations (5.4) to (5.7) gives the following 

cofactor matrices 

 

© 2005, R.E. Deakin Notes on Least Squares (2005) 5–2 



RMIT University  Geospatial Science 

 ( ) ( )TT T
tt ff= =Q B W Q B W N  (5.8) 

 ( ) ( )1 1 T

xx tt
1− −=Q N Q N N−=  (5.9) 

 

( ) ( )1 1

1

TT T
vv ff

T

− −

−

= − −

= −

Q I BN B W Q I BN B W

Q BN B  (5.10) 

 

( ) ( )ˆ̂

1

T

ll
T

vv

−

= − −

=
= −

Q B Q B

BN B
Q Q  (5.11) 

Variance-covariance matrices for t, x, v and  are obtained by multiplying the cofactor matrix 

by the variance factor 

l̂
2
0σ . 

 

5.2. Calculation of the quadratic form  Tv Wv

The a priori estimate of the variance factor may be computed from 

 2
0ˆ

T

r
σ =

v Wv  (5.12) 

where  is the quadratic form, and Tv Wv

  is the degrees of freedom where n is the number of observations and u 

is the number of unknown parameters.  r is also known as the number 

of redundancies. 

r n u= −

 

A derivation of equation (5.12) is given below.  The quadratic form  may be computed 

in the following manner. 

Tv Wv

 

Remembering, for the method of indirect observations, the following matrix equations 

 
1

T

T

−

=

=

=
= −

N B WB
t B Wf
x N t
v f Bx

 

then 
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( ) ( )
( ) ( )
( )( )

2
2
2

T T

T T T

T T T

T T T T T T

T T T T

T T T

T T T

= − −

= − −

= − −

= − − +

= − +

= − +

= − +

v Wv f Bx W f Bx
f x B W f Bx
f W x B W f Bx

f Wf f WBx x B Wf x B WBx
f Wf f WBx x B WBx
f Wf t x x Nx
f Wf x t x t

 

and 

  (5.13) T T= −v Wv f Wf x tT

 

5.3. Calculation of the Estimate of the Variance Factor 2
0σ̂  

The variance-covariance matrices of residuals vvΣ , adjusted observations  and computed 

parameters 

ˆˆll
Σ

xxΣ  are calculated from the general relationship 

  (5.14) 2
0σ= QΣ

Cofactor matrices  are computed from equations ˆ ˆ, andvv x x l l
Q Q Q (5.9) to (5.11) and so it 

remains to determine an estimate of the variance factor 2
0σ̂ . 

 

The development of a matrix expression for computing 2
0σ̂  is set out below and follows 

Mikhail (1976, pp.285-288).  Some preliminary relationships will be useful. 

 

1. If A is an (n,n) square matrix, the sum of its diagonal elements is a scalar quantity 

called the trace of A and denoted by ( )tr A  The following relationships are useful 

 ( ) ( ) ( )tr tr tr+ = +A B A B   for A and B of same order (5.15) 

   (5.16) ( ) (Ttr tr=A )A

 and for the quadratic form  where A is symmetric Tx A x

)   (5.17) (T Ttr=x A x x x A
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2. The variance-covariance matrix xxΣ  given by equation (3.21) can be expressed in the 

following manner, remembering that x is a vector of random variables and xm  is a 

vector of means. 

 

{ }
{ }
{ }
{ } { } { } {
{ } { } { }

( )( )

( )( )

T
xx x x

T T
x x

T T T T
x x x x

T T T }T
x x x

T T T
x x x x

E

E

E

E E E E

E E E

Σ = − −

= − −

= − − +

= − − +

= − − +

x m x m

x m x m

xx xm m x m m

xx xm m x m m

xx x m m x m m

x

T

 

 Now from equation (3.18) { }x E=m x  hence 

 

{ }
{ }

T T T T
xx x x x x

T T
x x

E

E

Σ = − − +

= −

xx m m m m m m

xx m m

x x

 (5.18) 

 or { }T T
xx xE = +xx m mΣ x   (5.19) 

3. The expected value of the residuals is zero, i.e., 

 { } vE = =v m 0

1

 (5.20) 

4. By definition (see Chapter 2) the weight matrix W, the cofactor matrix Q and the 

variance-covariance matrix Σ  are related by 

 1 2
0σ

− −= =W Q Σ  (5.21) 

 

Now, for the least squares adjustment of indirect observations the following relationships are 

recalled 

  1

, ,
, ,

T T

ff tt xx
−

+ = = =

= = =

v Bx f N B WB t B Wf
Q Q Q N Q N

Bearing in mind equation (5.21), the following relationships may be introduced 

 1 1
2
0

1 , T

σ
− −= =W M BΣ Σ B  

and from these follow 
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 4 1
0, ,ff tt xxσ −Σ = Σ = =M MΣ Σ  

In addition, the expectation of the vector f is the mean fm  and so we may write 

 { } { } { } { }f E E E E= = + = +m f v Bx v B x  

Now since { } xE =x m  and { }E =v 0  

 f x=m Bm  (5.22) 

Now the quadratic form 

 ( )2 1
0

T Tσ −=v Wv v vΣ  (5.23) 

and from equation (5.13) 

  
T T T

T T

= −

= −

v Wv f Wf x t
f Wf x Nx

Using the relationships above 

  1 1T T T− −= −v v f f x MΣ Σ x

Now the expected value of this quadratic form is 

 
{ } { }

{ } {

1 1

1

T T T

T T

E E

E E

− −

−

= −

= −

v v f f x Mx

f f x Mx

Σ Σ

Σ }
 

Recognising that the terms on the right-hand-side are both quadratic forms, equation (5.17) 

can be used to give 

 

{ } ( ){ } ( ){ }
{ }( ) { }( )
{ }( ) { }( )

1 1

1

1

T T

T T

T T

E E tr E tr

tr E tr E

tr E tr E

− −

−

−

= −

= −

= −

v v ff xx M

ff xx M

ff xx M

Σ Σ

Σ

Σ

T

 

Now using equation (5.19) 

 

{ } ( ) ( )
( ) ( )
( ) ( )

( )

1 1

1

1

1

T T
ff f f xx x x

T T
nn f f uu x x

T T
nn uu f f x x

T T
f f x x

E tr tr

tr tr

tr tr

n u

− −

−

−

−

⎡ ⎤ ⎡= + − +⎣ ⎦ ⎣

= + − +

= − − +

= − − +

v v m m m m M

I m m I m m M

I I m m m m M

m m m Mm

Σ Σ Σ Σ

Σ

Σ

Σ

T ⎤⎦
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From equation (5.22) f x=m Bm  hence using the rule for matrix transpose 

, then ( )TT T
f x x= =m Bm m BT

 

{ } ( )
( )
( )

1 1T T T T
x x x

T T
x x x x

E n u

n u

n u

− −= − − +

= − − +

= −

v v m B Bm m Mm

m Mm m Mm

Σ Σ x

 

Thus according to equation (5.23) and the expression above 

 
{ } { }

( )

2 1
0

2
0

T TE E

n u

σ

σ

−=

= −

v Wv v vΣ
 

from which follows 

 
{ }2

0

TE
n u

σ =
−

v Wv
 

Consequently, an unbiased estimate of the variance factor 2
0σ̂  can be computed from 

 2
0ˆ

T T

n u r
σ = =

−
v Wv v Wv  (5.24) 

r n u= −  is the number of redundancies in the adjustment and is known as the degrees of 

freedom

 

Using equation (5.13) an unbiased estimate of the variance factor 2
0σ̂  can be computed from 

 2
0ˆ

T T

r
σ −

=
f Wf x t  (5.25) 
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6. LEAST SQUARES ADJUSTMENT OF OBSERVATIONS ONLY 

In Chapter 2 the least squares technique of adjustment of indirect observations was introduced 

using the example of fitting a straight line through a series of data points.  The "observations" 

in this example were the x,y coordinates that were indirect measurements of the unknown 

parameters m and c, the slope and intercept of the line on the y-axis respectively.  Subsequent 

examples of curve fitting (parabola and ellipse) demonstrated this technique and in Chapter 4 

adjustment of indirect observations was applied to a level network.  An alternative to this 

technique, known as least squares adjustment of observations only, will be introduced in this 

chapter using the level network example of Chapter 4. 

 

6.1. Adjustment of a Level Network using Least Squares Adjustment of 
Observations Only 

Figure 6.1 shows a diagram of a level network of height differences observed between the 

fixed stations A (RL 102.440 m) and B (RL 104.565 m) and "floating" stations X, Y and Z 

whose Reduced Levels (RL's) are unknown.  The arrows on the diagram indicate the direction 

of rise.  The Table of Height differences shows the height difference for each line of the 

network and the distance (in kilometers) of each level run.  The height differences can be 

considered as independent (uncorrelated) and of unequal precision, where the weights of the 

height differences are defined as being inversely proportional to the distances in kilometres 

(see Chapter 3, Section 3.5.2) 

 

⊗⊗

•

•

•

1

6

5
7

3

4

2

X

B
Y

Z

A

 

Line Height Diff Dist (km) 
1 6.345 1.7 
2 4.235 2.5 
3 3.060 1.0 
4 0.920 3.8 
5 3.895 1.7 
6 2.410 1.2 
7 4.820 1.5 

 
 

 

Figure 6.1  Level network 
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The measured height differences do not accord with the simple principle that they should sum 

to zero around a "closed loop", i.e., there are misclosures.  For example: 

 in the loop AXYA  1 6 5 0.040 mH H HΔ − Δ − Δ = +

 in the loop XBZYX  2 3 7 6 0.065 mH H H H−Δ − Δ + Δ + Δ = −

 in the loop AYZA  5 7 4 0.005 mH H HΔ − Δ + Δ = −

Hence it is required to determine the adjusted height differences (that will sum to zero) and 

the RL's of X, Y and Z. 

 

There are  observations (the measured height differences) and a minimum of  

observations are required to fix the RL's of X, Y and Z.  Hence there are  

redundant measurements, which 

7n = 0 3n =

0 4r n n= − =

equals the number of independent condition equations. 

Denoting the observed height differences as , residuals as  and the RL's of 

A and B as A and B, these condition equations are 

1 2,   etcl l 1 2,   etcv v

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 1 6 6 5 5

2 2 3 3 7 7 6 6

5 5 7 7 4 4

1 1 2 2

0

0

0

l v l v l v

l v l v l v l v

l v l v l v

l v l v B A

+ − + − + =

− + − + + + + + =

+ − + + + =

+ − + = −

 (6.1) 

The first 3 equations of (6.1) are the loop closure conditions and the last equation is a 

condition linking the RL's of A and B. 

 

Since the measurements are of unequal precision, there is an associated weight  with each 

observation and the application of the least squares principle calls for the minimization of the 

least squares function 

kw

ϕ  as 

  (6.2) 2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

or   2 2 2
1 1 2 2 3 3 7 7w v w v w v w vϕ = + + + +" 2

Considering equation (6.1) it is clear that separate expressions for residuals cannot be derived 

and substituted into ϕ , as was possible in the technique for adjustment of indirect 

observations (see Chapter 2).  Therefore another approach is needed to ensure that ϕ  is a 
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minimum as well as satisfying equations (6.1).  This is accomplished by using a method of 

function minimization developed by Lagrange1 and set out in the following manner. 

 

 (i) Gather the terms in equations (6.1) together 

 

( )
( )
( )

( ) ( )

1 6 5 1 6 5

2 3 7 6 2 3 7 6

5 7 4 5 7 4

1 2 1 2

0

0

0

v v v l l l f

v v v v l l l l f

v v v l l l f

v v B A l l f

− − = − − − =

− − + + = − − − + + =

− + = − − + =

1

2

3

4− = − − − =

 (6.3) 

 

 (ii) Rewrite equations (6.3) in normal form (zero on the right-hand-side) 

 

1 6 5 1

2 3 7 6 2

5 7 4 3

1 2 4

0
0
0
0

v v v f
v v v v f

v v v f
v v f

− − − =
− − + + − =

− + − =
− − =

 (6.4) 

 (iii) Now form an augmented function ϕ′  of the form 

  (6.5) ( ) (
( ) ( )

2 2 2 2
1 1 2 2 3 3 7 7

1 1 6 5 1 2 2 3 7 6 2

3 5 7 4 3 4 1 2 4

2 2

2 2

w v w v w v w v
k v v v f k v v v v f

k v v v f k v v f

ϕ′ = + + + +

− − − − − − − + + −

− − + − − − −

"
)

4 where  are Lagrange multipliers and there are as many multipliers 

as there are conditions.  The introduction of 

1 2 3,  ,   and k k k k

2−  preceding each multiplier is for 

convenience only.  Inspection of equations (6.5), (6.4) and (6.2) show that ϕ  and 

ϕ′  are equal since the additional terms in ϕ′  equate to zero. 

 

 (iv) The unknowns in equation (6.5) are the residuals  and the Lagrange 

multipliers , and so for 

1 2, , ,v v v… 7

1 2 3 4,  ,   and k k k k ϕ′  to be a minimum, the partial 

derivatives of ϕ′  with respect to each of the unknowns must be zero.  Setting the 

                                                 
1  Joseph Louis LAGRANGE (1713-1813), a great French mathematician whose major work was in the calculus of variation, 
celestial and general mechanics, differential equations and algebra.  Lagrange spent 20 years of his life in Prussia and then 
returned to Paris where his masterpiece, Mécanique analytique, published in 1788, formalized much of Newton's work on 
calculus. 
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partial derivatives of ϕ′  with respect to the residuals leads to the following 

equations 

 

( )

( )

( )

( )

( )

1 1 1 4 1 1 4
1 1

2 2 2 4 2 2 4
2 2

3 3 2 3 2
3 3

4 4 3 4 3
4 4

5 5 1 3 5 1 3
5 5

6 6 1 2 6 1 2
6 6

12 2 2 0 or

12 2 2 0 or

12 2 0 or

12 2 0 or

12 2 2 0 or

12 2 2 0 or

w v k k v k k
v w

w v k k v k k
v w

w v k v k
v w

w v k v k
v w

w v k k v k k
v w

w v k k v k k
v w

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

′∂
= − − = = +

∂
′∂
= + + = = − −

∂
′∂
= + = = −

∂
′∂
= − = =

∂
′∂
= + − = = − +

∂
′∂
= + − = = − +

∂

(7 7 2 3 7 2 3
7 7

12 2 2 0 orw v k k v k k
v w
ϕ′∂

= − + = = −
∂

)  (6.6) 

 and when ϕ′  is differentiated with respect to the Lagrange multipliers and equated 

to zero 

 

( )

( )

( )

( )

1 6 5 1 1 6 5
1

2 3 7 6 2 2 3 7 6
2

5 7 4 3 5 7 4
3

1 2 4 1 2
4

2 0 or

2 0 or

2 0 or

2 0 or

v v v f v v v f
k

v v v v f v v v v f
k

v v v f v v v f
k

v v f v v f
k

1

2

3

4

ϕ

ϕ

ϕ

ϕ

′∂
= − − − − = − − =

∂
′∂
= − − − + + − = − − + + =

∂
′∂
= − − + − = − + =

∂
′∂
= − − − = − =

∂
 (6.7) 

  the original condition equations (6.4) result.  This demonstrates that the 

introduction of Lagrange multipliers ensures that the conditions will be satisfied 

when ϕ′  is minimized. 

 

 (v) Now, substituting equations (6.6) into (6.7) gives four normal equations 
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1 2 3 4
1 6 5 6 5 1

1 2 3
6 2 3 6 7 7 2

1 2 3
5 7 4 5 7

1 2 4
1 2 1 2

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

k k k k
w w w w w w

k k k
w w w w w w w

k k k
w w w w w

k k k
w w w w

⎛ ⎞
+ + − − + =⎜ ⎟

⎝ ⎠
⎛ ⎞

1

4 2

3

4

f

k f

f

f

− + + + + − + =⎜ ⎟
⎝ ⎠

⎛ ⎞
− − + + + =⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + + =⎜ ⎟
⎝ ⎠

 (6.8) 

  Equations (6.8) can be solved to give the Lagrange multipliers , 

which can be substituted back into equations 

1 2 3,  ,   and k k k k4

(6.6) to give the residuals 

.  Note that the coefficient terms 1 2 7, , ,v v v… 1

kw
 in equations (6.8) are known as 

weight reciprocals and in the case of levelling are simply the distances of the level 

runs in kilometres. 

 

Using the data from Figure 6.1 the weight reciprocals are the distances (in kilometres) 

 { }1 1.7 2.5 1 3.8 1.7 1.2 1.5
kw
=  

the numeric terms f are given by equations (6.3) 

 

( )
( )

( )
( ) ( )

1 1 6 5

2 2 3 7 6

3 5 7 4

4 1 2

0.040 m

0.065 m

0.005 m

0.015 m

f l l l

f l l l l

f l l l

f B A l l

= − − − = −

= − − − + + =

= − − + =

= − − − =

 

and the normal equations (in matrix form) are 

  (6.9) 

1

2

3

4

4.6 1.2 1.7 1.7 0.040
1.2 6.2 1.5 2.5 0.065
1.7 1.5 7.0 0 0.005
1.7 2.5 0 4.2 0.015

k
k
k
k

− − −⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥− − ⎢ ⎥⎢ ⎥ =

− − ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

The solution of equations (6.9) for the Lagrange multipliers gives 

  1 2 3 40.005700, 0.009671, 0.001402, 0.000122k k k k= − = = =

© 2005, R.E. Deakin Notes on Least Squares (2005) 6–5 



RMIT University Geospatial Science 

 

Substituting these values ( ) together with the weight reciprocals 1 2 3,  ,   and k k k k4
1

kw
 into 

equations (6.6) gives the residuals .  The height differences, residuals and the 

adjusted height differences (observed value + residual) of the level network are shown below. 

1 2, , ,v v v… 7

 

Line Observed HΔ  Residual v Adjusted HΔ  

1 6.345 -0.0095 6.336 

2 4.235 -0.0245 4.211 

3 3.060 -0.0097 3.050 

4 0.920 0.0053 0.925 

5 3.895 0.0121 3.907 

6 2.410 0.0184 2.428 

7 4.820 0.0124 4.832 

 

These are identical results to those obtained by least squares adjustment of indirect 

observations set out in Chapter 4. 

 

6.2. Some Comments on the Two Applications of the Method of Least Squares 

 

1. The method of least squares has been applied in two examples: 

 

 (a) determining the parameters of a "line of best fit" through a number of data points 

(see Chapter 2) and 

 

 (b) determining the adjusted height differences in a level network. 

 

2. Consider the first example:  the line of best fit. 

 

• A mathematical model (equation) was established linking observations, residuals 

(corrections) and unknown parameters. 
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• For n observations, there is a minimum number n  required to determine the u 

unknown parameters.  In this case  n

0

u0 =   and the number of redundant 

observations is  r n n= − 0  

• An equation was written for each observation, i.e., there were n observation 

equations.  The observation equations were recast as residual equations. 

• Since there were n equations in u unknowns (  there is no unique solution and 

the least squares principle was used to determine the u 

)n u〉

normal equations from 

which the best estimates of the u unknown parameters were calculated. 

 

This technique of least squares "adjustment" is known by various names, some of which are 

 

 parametric least squares, 

 least squares adjustment by observation equations, 

 least squares adjustment by residual equations, and 

 least squares adjustment of indirect observations. 

 

The last of these is perhaps the most explicit since each observation is in fact an indirect 

measurement of the unknown parameters.  Least squares adjustment of indirect 

observations is the name adopted for this technique by Mikhail (1976) and Mikhail & 

Gracie (1981) and will be used in these notes. 

 

3. Consider the second example:  the level network. 

 

• A relationship or condition that the observations (and residuals) must satisfy was 

established.  In this case, the condition to be satisfied was that observed height 

differences (plus some unknown corrections or residuals) should sum to zero 

around a closed level loop. 

• The minimum number of observations n  required to fix the heights of X, Y and Z 

and satisfy the condition between the fixed points A and B was determined giving 

the number of 

0

independent condition equations equal to the number of redundant 

observations  r n n= − 0 . 

• There were r equations in n unknown residuals, and since r n n= − 0  was less than 

n, there was no unique solution for the residuals.  The least squares principle was 
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used to determine a set of r normal equations, which were solved for r Lagrange 

multipliers which in turn, were used to obtain the n residuals. 

• The residuals were added to the observations to obtain the adjusted observations 

which were then used to determine the heights of points X, Y and Z. 

 

This technique of least squares "adjustment" is known by various names, two of which are 

 

 least squares adjustment by condition equations, and 

 least squares adjustment of observations only. 

 

The second of these is the more explicit since equations involve only observations.  No 

parameters are used.  Least squares adjustment of observations only is the name adopted for 

this technique by Mikhail (1976) and Mikhail & Gracie (1981) and will be used in these 

notes. 

 

It should be noted that in practice, the method of adjustment of observations only is seldom 

employed, owing to the difficulty of determining the independent condition equations 

required as a starting point.  This contrasts with the relative ease of the technique of 

adjustment of indirect observations, where every observation yields an equation of fixed form.  

Computer solutions of least squares problems almost invariably use the technique of 

adjustment of indirect observations. 

 

6.2.1. A Note on Independent Condition Equations. 

 

⊗

•

•

•1

6

3

4

2

B
A

D

5

C
Consider the level network shown in Figure 6.2.  The 

RL of A is known and the RL's of B, C and D are to 

be determined from the observed height differences.  

The arrows on the diagram indicate the direction of 

rise.   

 

 Figure 6.2  Level network 
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There are n  observations with a minimum of n= 6 0 3=  required to fix the RL's of B, C and 

D with respect to A.  Hence there are r n n= − =0 3 redundant measurements, which equal 

the number of independent condition equations.  Omitting the residuals, these equations are 

 
l l l
l l l
l l l

1 3 2

4 5 3

1 4 6

0
0
0

+ − =

− − =

+ − =

 (6.10) 

Alternatively, here is another set of independent condition equations 

 
l l l l

l l l
l l l l

1 3 5 6

1 4 6

1 4 5 2

0
0
0

+ + − =

+ − =

+ − − =

 (6.11) 

But, here is a further set of condition equations, which are not independent 

 
l l l
l l l

l l l l

1 3 2

4 5 3

1 4 5 2

0
0
0

+ − =

− − =

+ − − =

 (6.12) 

where the third equation of (6.12) is obtained by adding the first two. 

 

Care needs to be taken in determining independent equations and it is easy to see that this 

could become quite difficult as the complexity of the adjustment problem increases. 

 

6.3. Matrix Methods and Least Squares Adjustment of Observations Only 

Matrix methods may be used to develop standard equations and solutions for this technique of 

least squares adjustment. 

 

Consider again the example of the level net shown in Figure 6.1.  The independent condition 

equations, (reflecting the fact that height differences around closed level loops should sum to 

zero and the condition between the known RL's of A and B), are 

 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

1 1 6 6 5 5

2 2 3 3 7 7 6 6

5 5 7 7 4 4

1 1 2 2

0

0

0

l v l v l v

l v l v l v l v

l v l v l v

l v l v B A

+ − + − + =

− + − + + + + + =

+ − + + + =

+ − + = −

 (6.13) 
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These equations could be expressed in matrix form as 

 

1 1

2 2

3 3

4 4

5 5

6 6

7 7

1 0 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 0 1 1 0 1 0
1 1 0 0 0 0 0

l v
l v
l v
l v
l v

B A
l v
l v

+⎡ ⎤
⎢ ⎥+⎢ ⎥− −⎡ ⎤ ⎡

+⎢ ⎥
⎤

⎢ ⎥ ⎢− − ⎢ ⎥
⎥

⎢ ⎥ ⎢+ =⎢ ⎥−
⎥

⎢ ⎥ ⎢
⎢ ⎥+

⎥
⎢ ⎥ ⎢− −⎢ ⎥

⎥
⎣ ⎦ ⎣+⎢ ⎥

⎢ ⎥+⎣ ⎦

⎦

 (6.14) 

or A l A v d+ =  (6.15) 

which can be written as 

 A v f=  (6.16) 

where f d A l= −  (6.17) 

and 

 n is the number of measurements or observations, 

  is the minimum number of observations required, n0

 r n n= − 0  is the number of redundant observations (equal to the number of  

  condition equations, 

 v is an (n,1) vector of residuals, 

 l is the (n,1) vector of observations, 

 A is an (r,n) matrix of coefficients, 

 f is an (r,1) vector of numeric terms derived from the observations, 

 d is an (r,1) vector of constants.  Note that in many least squares 

  problems the vector d is zero. 

 

Now if each observation has an a priori estimate of its variance then the (n,n) weight matrix 

of the observations W is known and the least squares function ϕ  is 

  2

1

 the sum of the weighted squared residuals
n

k k
k

w vϕ
=

= = ∑

In matrix form, the least squares function is expressed as 

  (6.18) Tϕ = v Wv
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Now ϕ  is the function to be minimised but with the constraints imposed by the condition 

equations (6.16).  This is achieved by adding an (r,1) vector of Lagrange multipliers k and 

forming a new function ϕ′ . 

 2 ( )T Tϕ′ = −v Wv k Av f−  (6.19) 

Note that the second term of (6.19) equals zero, since A v f 0− = . 

 

Minimising ϕ′  is achieved by differentiating with respect to the unknowns, v and k and 

equating these differentials to zero 

 2 2T T T T∂ϕ
∂

′
= − + =v A f 0

k
 (6.20) 

 2 2T T T∂ϕ
∂

′
= − =v W k A 0

v
 (6.21) 

Dividing by two, re-arranging and transposing equations (6.20) and (6.21) gives 

 A v f=  (6.22) 

 T− =Wv A k 0  (6.23) 

Note that equations (6.22) are the original condition equations and also that W  due to 

symmetry. 

W= T

 

From (6.23), the (n,1) vector of residuals v is 

  (6.24) 1 T−= =v W A k QA kT

which, when substituted into (6.22), gives 

 ( ) ( )T T= =A QA k AQA k f  (6.25) 

The matrix  is symmetric and of order (r,r) and equations TAQA (6.25) are often termed the 

normal equations.  The solution of the (r,1) vector of Lagrange multipliers k is 

 ( ) 1T −
=k AQA f  (6.26) 

Now the term  in equations TAQA (6.25) and (6.26) can be "simplified" if an equivalent set of 

observations l  is considered, i.e., e
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 l Ae l=  (6.27) 

Applying the general law of propagation of variances (cofactors) to (6.27) gives 

  (6.28) T
e ll= =Q AQ A AQAT

and ( ) 11 T
e e

−−= =W Q AQA  (6.29) 

Substituting (6.29) into (6.26) gives another expression for k 

  (6.30) 1
e
−= =k Q f W fe

v

After computing k from either (6.26) or (6.30) the residuals v are computed from (6.24) and 

the vector of adjusted observations �l  is given by 

  (6.31) �l l= +

This is the standard matrix solution for least squares adjustment of observations only. 

 

6.4. Propagation of Variances for Least Squares Adjustment of Observations 
Only 

In this technique of least squares adjustment, the condition equations in matrix form are 

 A v f=  (6.32) 

with f d A l= −  (6.33) 

Similarly to Chapter 5, equation (6.33) can be expressed in a form similar to equation (3.23) 

and the general law of propagation of variances applied to give the cofactor matrix of the 

numeric terms f. 

 f A l d= − +  

and ( ) ( )T T
f f = − − = =Q A Q A AQA eQ  (6.34) 

Thus the cofactor matrix of f is also the cofactor matrix of an equivalent set of observations. 

 

The solution "steps" in the least squares adjustment of observations only are set out above and 

restated as 
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Q A Q A

W Q
k W f

v Q A

l l v

e
T

e e

e

T k

=

=

=

=

= +

−1

�

 

Applying the law of propagation of variances (remembering that cofactor and weight matrices 

are symmetric) gives the following cofactor matrices 

  (6.35) ( ) ( )T
kk e f f e e=Q W Q W W=

  (6.36) ( ) ( )T T T T
vv k k e= =Q QA Q QA QA W AQ

and 

  

( )

ˆ
T

T
e

T
e

= +

= +

= +

= + −

l l v
l QA k
l QA W f

l QA W d Al

from which follows 

 ( )ˆ T
e= − +l I QA W A l QA W dT

e  (6.37) 

Applying the law of propagation of variances to (6.37) gives 

 ( ) ( )ˆ ˆ
TT T

e el l
= − −Q I QA W A Q I QA W A  

which reduces to 

  (6.38) ˆ ˆ
T

el l
= − = −Q Q QA W AQ Q Qvv

Variance-covariance matrices for k, v and �l  are obtained by multiplying the cofactor matrix 

by the variance factor σ 0
2   - see equation (2.32). 

 

The a priori estimate of the variance factor may be computed from 

 �σ 0
2 =

v WvT

r
 (6.39) 

where 

© 2005, R.E. Deakin Notes on Least Squares (2005) 6–13 



RMIT University Geospatial Science 

 

  is the quadratic form, and v WvT

 r is the degrees of freedom. 

 

A derivation of equation (6.39) is given in Chapter 5.  The quadratic form v W  may be 

computed in the following manner. 

vT

 

Remembering, for the method of observations only, the following matrix equations 

  
1

T
e

e e

e
T

−

=

=
=

=

Q AQA

W Q
k W f

v QA k

then 

 

( ) ( )

1

1

TT T

T T

T T

T
e

T
e

T
e e

−

−

=

=

=

=

=

=

v Wv QA k W QA k

k AQWQA k
k AQA k
k Q k

k W k

f W W k

T

T

 

and 

  (6.40) T =v Wv f k
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6.5. Adjustment of a Single Closed Traverse using the method of Least 
Squares Adjustment of Observations Only 

The basic component of many surveys is a traverse whose bearings have been determined by 

theodolite or total station observations and distances measured by EDM.  If careful 

observations are made with well maintained equipment, the measurements are usually free of 

systematic errors and mistakes and the surveyor is left with small random errors which, in the 

case of a closed traverse, reveal themselves as angular and linear misclosures.  If the 

misclosures are within acceptable limits, it is standard practice to remove the misclosures by 

adjusting the original observations to make the traverse a mathematically correct figure.  In 

this section, only single closed traverses are considered and such traverses may begin and end 

at different fixed points or close back on the starting point.  Traverse networks, consisting of 

two or more single traverses with common junction points, are not considered here; such 

networks are usually adjusted by a method commonly known as Variation of Coordinates, 

based on Least Squares Adjustment of Indirect Observations. 

 

6.5.1. Some single traverse adjustment methods and their deficiencies 

 

A traverse adjustment method should be based on sound mathematical principles related to 

the measurement techniques with due allowance made for independence (or dependence) of 

those measurements and also allow for differing measurement precisions. 

 

Bowditch's Rule and the Transit Rule, both of which adjust lengths and bearings of traverse 

lines and Crandall's method, which adjusts the lengths only of the traverse lines, are three 

popular adjustment methods that fail to meet the general guidelines above.  Although 

Crandall's method, which is explained in detail in later sections, does have mathematical 

rigour if it assumed that the bearings of a traverse close and require no further adjustment. 

 

Bowditch's Rule and the Transit Rule for adjusting single traverses are explained below by 

applying the rules to adjust a four-sided polygon having an unusually large misclose.  The 

polygon, shown in Figure 6.3, does not reflect the usual misclosures associated with traverses 

using modern surveying equipment. 
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Bowditch's Rule 

Nathaniel Bowditch (1773-1838) was an American mathematician and astronomer (see 

citation below).  In 1808, in response to a prize offered by a correspondent in The Analyst2, 

Bowditch put forward a method of adjusting the misclose in a chain and compass survey 

(bearings measured by magnetic compass and distances measured by surveyor's chain).  His 

method of adjustment was simple and became widely used.  It is still used today for the 

adjustment of a figure prior to the computation of the area, where the area-formula assumes a 

closed mathematical figure. 

 

Prior to the advent of programmable calculators and computers, Bowditch's Rule was often 

used to adjust traverses that did not close due to the effects of random errors in the 

measurement of bearings and distances.  Its use was justified entirely by its simplicity and 

whilst it had theoretical rigour – if the bearings of traverse lines were independent of each 

other, as they are in compass surveys – it is incompatible with modern traversing techniques.  

Bowditch's rule cannot take into account different measurement precisions of individual 

traverse lines nor can it accommodate complicated networks of connecting traverses.  

Nevertheless, due to its long history of use in the surveying profession, its simplicity and its 

practical use in the computation of areas of figures that misclose, Bowditch's Rule is still 

prominent in surveying textbooks and is a useful adjustment technique. 
Bowditch, Nathaniel (b. March 26, 1773, Salem, Mass., U.S. – d. March 16, 1838, Boston, Mass., U.S.), self-
educated American mathematician and astronomer, author of the best book on navigation of his time, and 
discoverer of the Bowditch curves, which have important applications in astronomy and physics.  Between 
1795 and 1799 Bowditch made four lengthy sea voyages, and in 1802 he was put in command of a merchant 
vessel.  Throughout that period he pursued his interest in mathematics.  After investigating the accuracy of The 
Practical Navigator, a work by the Englishman J.H. Moore, he produced a revised edition in 1799.  His 
additions became so numerous that in 1802 he published The New American Practical Navigator, based on 
Moore's book, which was adopted by the U.S. Department of the Navy and went through some 60 editions.  
Bowditch also wrote many scientific papers, one of which, on the motion of a pendulum swinging 
simultaneously about two axes at right angles, described the so-called Bowditch curves (better known as the 
Lissajous figures, after the man who later studied them in detail).  Bowditch translated from the French and 
updated the first four volumes of Pierre-Simon Laplace's monumental work on the gravitation of heavenly 
bodies, Traité de mécanique céleste, more than doubling its size with his own commentaries.  The resulting 
work, Celestial Mechanics, was published in four volumes in 1829-39.  Bowditch refused professorships at 
several universities.  He was president (1804-23) of the Essex Fire and Marine Insurance Company of Salem 
and worked as an actuary (1823-38) for the Massachusetts Hospital Life Insurance Company of Boston.  From 
1829 until his death, he was president of the American Academy of Arts and Sciences.  Copyright 1994-1999 
Encyclopædia Britannica 
 

                                                 
2 The Analyst or Mathematical Museum was a journal of theoretical and applied mathematics.  In Vol. I, No. II, 
1808, Robert Patterson of Philadelphia posed a question on the adjustment of a traverse and offered a prize of 
$10 for a solution; the editor Dr Adrian appointed as the judge of submissions.  Bowditch's solution was 
published in Vol. I, No. IV, 1808, pp. 88-93 (Stoughton, H.W., 1974.  'The first method to adjust a traverse 
based on statistical considerations', Surveying and Mapping, June 1974, pp. 145-49). 
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Bowditch's adjustment can best be explained by considering the case of plotting a figure 

(using a protractor and scale ruler) given the bearing and distances of the sides. 

 

Consider Figure 6.3, a plot that does not close, of a four-sided figure ABCD.  The solid lines 

AB, BC, CD and DE are the result of marking point A, plotting the bearing AB and then 

scaling the distance AB to fix B.  Then, from point B, plotting the bearing and distance BC to 

fix C, then from C, plotting the bearing and distance CD to fix D and finally from D, plotting 

the bearing and distance DA.  However, due to plotting errors, the final line does not meet the 

starting point, but instead finishes at E.  The distance EA is the linear misclose d, due to 

plotting errors, i.e., errors in protracting bearings and scaling distances.   

 

misclose
A

B

C

D

E

A B C D E

B'
C' D' A'

d

L

B'

C'

D'

d

x

x'

 
 

 

Figure 6.3  Graphical plot of polygon ABCD with misclose d 
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To adjust the figure ABCDE to remove the misclose d the following procedure can be used. 

 

1. Draw lines parallel to the line xx' (the misclose bearing) through points B, C and D. 

2. Draw a right-angled triangle AEA'.  The base of the triangle is L, equal to the sum of the 

lengths of the sides and the height is the linear misclose d. 

3. Along the base of the triangle, mark in proportion to the total length L, the distances AB, 

BC and CD.  These will be the points B, C and D. 

4. Draw vertical lines from B, C and D intersecting the hypotenuse of the triangle at B', C' 

and D'.  These distances are then marked off along the parallel lines of the main figure. 

5. The adjusted figure is AB'C'D'A. 

 

This adjustment is a graphical demonstration of Bowditch's Rule; i.e., the linear misclose d is 

apportioned to individual sides in the ratio of the length of the side to the total length of all the 

sides in the direction of the misclose bearing. 

 

Bowditch's Rule as it is normally applied to the adjustment of traverses can be deduced by 

again considering Figure 6.3.  The linear misclose d has easting and northing components 

 and , the subscript m referring to the misclose.  The distances BB', CC' and DD' 

each have easting and northing components, say  and 

mEΔ mNΔ

, , ,B B CdE dN dE dNC ,D DdE dN , the 

east misclose  and the north misclose m B CdE dE dE dE= + + D Dm B CdN dN dN dN= + + . 

 

Thus, we may express Bowditch's Rule for calculating adjustments  to individual 

easting and northing components  of line k of a traverse whose total length is L as 

,kdE dNk

k,kE NΔ Δ

 

m
k k

m
k k

dEdE dist
L

dNdN dist
L

⎛ ⎞= ⎜ ⎟
⎝
⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎠  (6.41) 

As an example of a Bowditch adjustment, Table 6.1 shows the bearings and distances of the 

polygon in Figure 6.3.   

The linear misclose, which is quite large, is ( ) ( )2 23.173 8.181 8.775d = − + − =  and the 

length L, equal to the sum of the four sides, is 51.53 53.86 36.31 54.71 196.41L = + + + =  
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The corrections to the easting and northing components of the line CD are 

 

3.17336.31 0.587
196.41
8.18136.31 1.512

196.41

dE

dN

= × =

= × =
 

Note: (i) Easting and northing misclosures  and  used in equations mdE mdN (6.41) have 

opposite signs to the misclosures in the tabulation, 

 (ii) The sums of the corrections are equal and of opposite sign to the misclosures 

and 

 (iii) The sums of the adjusted easting and northing components are zero. 

 
   

components corrections adjusted 
components 

Line Bearing Dist EΔ  NΔ  dN dN EΔ  NΔ  
AB 52º 31' 51.53 40.891 31.358 0.832 2.146 41.723 33.504 
BC 152º 21' 53.86 24.995 -47.709 0.870 2.243 25.865 -45.466 
CD 225º 30' 36.31 -25.898 -25.450 0.587 1.512 -25.311 -23.938 
DA 307º 55' 54.71 -43.161 33.620 0.884 2.280 -42.277 35.900 

  misclose -3.173 -8.181 3.173 8.181 0.000 0.000 
 

Table 6.1.  Bowditch Rule adjustment of polygon ABCD 

 

 

Transit Rule 

The Transit Rule has no theoretical basis related to surveying instruments or measuring 

techniques.  Its only justification is its mathematical simplicity, which is no longer a valid 

argument for the method in this day of pocket computers.  The Transit Rule for calculating 

adjustments  to individual easting and northing components ,kdE dNk k,kE NΔ Δ  of line k of a 

traverse whose east and north misclosures are  and  is mdE mdN

 

1 1

m
k k k kn

j j
j j

dE dNdE E dN N
E N

= =

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜= Δ = Δ
⎜ ⎟ ⎜Δ Δ⎜ ⎟ ⎜
⎝ ⎠ ⎝
∑ ∑

m
n

⎞
⎟
⎟
⎟
⎟
⎠

 (6.42) 
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kEΔ  is the absolute value of the east component of the kth traverse leg and 
1

n

j
j

E
=

Δ∑  is the 

sum of the absolute values of the east components of the traverse legs and similarly for kNΔ  

and 
1

n

j
j

N
=

Δ∑ . 

 

As an example of a Transit Rule adjustment, Table 6.2 shows the bearings and distances of 

the polygon in Figure 6.3.  The east and north misclosures are 3.173mdE =  and , 

and the sums of the absolute values of the east and north components of the traverse legs are 

8.181mdN =

1

134.945
n

j
j

E
=

Δ =∑  and 
1

138.137
n

j
j

N
=

Δ =∑   

 

The corrections to the easting and northing components of the line CD are 

 

3.17325.898 0.587
134.945

8.18125.450 1.512
138.137

dE

dN

= × =

= × =
 

Note: (i) Easting and northing misclosures  and  used in equations mdE mdN (6.42) have 

opposite signs to the misclosures in the tabulation, 

 (ii) The sums of the corrections are equal and of opposite sign to the misclosures 

and 

 (iii) The sums of the adjusted easting and northing components are zero. 

 
   

components corrections adjusted 
components 

Line Bearing Dist EΔ  NΔ  dN dN EΔ  NΔ  
AB 52º 31' 51.53 40.891 31.358 0.961 1.857 41.852 33.215 
BC 152º 21' 53.86 24.995 -47.709 0.588 2.826 25.583 -44.883 
CD 225º 30' 36.31 -25.898 -25.450 0.609 1.507 -25.289 -23.943 
DA 307º 55' 54.71 -43.161 33.620 1.015 1.991 -42.146 35.611 

  misclose -3.173 -8.181 3.173 8.181 0.000 0.000 
 

Table 6.2  Transit Rule adjustment of polygon ABCD 
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6.5.2. Crandall's method.  A semi-rigorous single traverse adjustment method 

 

Suppose that the angles of a traverse – either beginning and ending at the same point or 

between two known points with starting and closing known bearings – have been adjusted so 

that the traverse has a perfect angular closure and the resulting bearings are considered as 

correct, or adjusted.  We call this a closed traverse.  A mathematical closure, using the 

adjusted bearings and measured distances, will in all probability, reveal a linear misclose, i.e., 

the sums of the east and north components of the traverse legs will differ from zero (in the 

case of a traverse beginning and ending at the same point) or certain known values (in the 

case of a traverse between known points).  Crandall's method, which employs the least 

squares principle, can be used to compute corrections to the measured distances to make the 

traverse close mathematically.  The method was first set out in the textbook Geodesy and 

Least Squares by Charles L. Crandall, Professor of Railroad Engineering and Geodesy, 

Cornell University, Ithaca, New York, U.S.A. and published by John Wiley & Sons, New 

York, 1906. 
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φ

φ
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3

s s
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ΔE ΔE

2
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Figure 6.4  Schematic traverse diagram 

 

Figure 6.4 shows a schematic diagram of a traverse of 1, 2, ,k n= …  legs where ,k ksφ  are the 

adjusted bearing and measured distance respectively of the kth leg.  The east and north 
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components of each traverse leg are sink kE s kφΔ =  and cosk kN s kφΔ =  respectively.  If the 

adjusted distance of the kth traverse leg is ( )k ks v+  where  is the residual (a small unknown 

correction) then the two conditions that must be fulfilled by the adjusted bearings and 

adjusted distances in a closed traverse are 

kv

 
( ) ( ) ( )
( ) ( ) ( )

1 1 1 2 2 2

1 1 1 2 2 2

sin sin sin

cos cos cos
n n n E

n n n

s v s v s v D

s v s v s v D

φ φ φ

φ φ

+ + + + + + =

+ + + + + + =

"

" Nφ

T

E

N

D
D

 (6.43) 

where  and  are the east and north coordinate 

differences respectively between the terminal points of the traverse.  Note that in a traverse 

beginning and ending at the same point  and  will both be zero. 

E END STARD E E= − N END STARTD N N= −

ED ND

 

Expanding equation (6.43) gives 

 1 1 2 2

1 1 2 2

sin sin sin
cos cos cos

n n E

n n N

v v v S
v v v S

φ φ φ
φ φ φ
+ + + + =
+ + + + =

"
"

 (6.44) 

where  (6.45) 
1 1 2 2

1

1 1 2 2
1

sin sin sin

cos cos cos

n

E n
k

n

N n
k

S s s s E

S s s s N

φ φ φ

φ φ φ

=

=

= + + + = Δ

= + + + = Δ

∑

∑

"

"

n k

n k

k,E NS S  are the sums of the east and north components, ,kE NΔ Δ  respectively, of the 

 traverse legs. 1, 2, ,k = … n

E

N

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

Equations (6.44) can be expressed in matrix form as 

  (6.46) 

1

2
1 2 3

3
1 2 3

sin sin sin sin
cos cos cos cos

n E

n N

n

v
v

D S
v

D S

v

φ φ φ φ
φ φ φ φ

⎡ ⎤
⎢ ⎥
⎢ ⎥ −⎡ ⎤

=⎢ ⎥⎢ ⎥ −⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

#

or =Av f  
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The solution for the vector of residuals v is given by equations (6.24) and (6.26) re-stated 

again as 

  (6.47) 
( )

1

1

T T

T

−

−

= =

=

v W A k QA k

k AQA f

where k is the vector of Lagrange multipliers, 1−=Q W  is the cofactor matrix and W is the 

weight matrix, A is a coefficient matrix containing sines and cosines of traverse bearings and 

f is a vector containing the negative sums of the east and north components of the traverse 

legs. 

 

In Crandall's method, weights are considered as inversely proportional to the measured 

distances and the measured distances are considered to be independent.  Hence the weight 

matrix W is diagonal 

 

1 1

2 2

3 3

0 0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 1

0 0n n

w s
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⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥
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and since  then 1−=Q W

 

1

2

3

0 0 0
0 0
0 0

0 n

s
s

s

s

0
⎡ ⎤
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
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Q

"
"

#
# %
"

 

and  (6.48) 

1 1 1

2 2 2

3 3 3 3

0 0 0 sin cos
0 0 0 sin cos
0 0 sin cos

0 sin cos
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s E
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⎢ ⎥ ⎢ ⎥ ⎢Δ Δ⎢ ⎥ ⎢ ⎥ ⎢

= ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢
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Now, since sin k
k

k

E
s

φ Δ
=  and cos k

k
k

N
s

φ Δ
=  then  can be written as TAQA

 

( )

( )

2

1 1

2

1 1

n n
k k k

k kk kT

n n
kk k

k kk k

E E N
s s a c

c bNE N
s s

= =

= =

⎡ ⎤Δ Δ Δ
⎢ ⎥

⎡ ⎤⎢= ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦ΔΔ Δ⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑
AQA  (6.49) 

and ( ) 1

2

1T b c
c aab c

− −⎡ ⎤
= ⎢ ⎥−− ⎣ ⎦

AQA  

giving the Lagrange multipliers from equations (6.47) as 

 

( ) ( )

( ) ( )
1 2

2 2

E E N N

N N E E

b D S c D S
k

ab c
a D S c D S

k
ab c

− − −
=

−
− − −

=
−

 (6.50) 

The residuals v (corrections to the measured distances) are given as 

  (6.51) 

1 1 1 1 2
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6.5.3. Example of Crandall's method 

 

Figure 6.5 shows a closed traverse between stations A, B, C, D and E.  The linear misclose 

(bearing and distance) of the traverse is 222º 57' 31" 0.2340 and the components of the 

misclose are  east and  north.  It is required to adjust the distances 

using Crandall's method. 

0.1594 m− 0.1712 m−
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229
° 3
5′ 

 
Figure 6.5  Closed traverse between stations ABCDE 

 

The adjusted bearings and measured distances and the traverse leg components are shown in 

Table 6.3 below.   and  are the summations of east and north components and since this 

traverse begins and ends at the same point then  and  will both be zero. 

ES NS

ED ND

 
Line Bearing Distance traverse leg components 

k kφ  ks  kEΔ  kNΔ  
1 42º 27′ 127.470 86.035437 94.055858 
2 96º 49′ 86.430 85.819028 -10.258619 
3 137º 16′ 162.370 110.182189 -119.264002 
4 229º 35′ 98.420 -74.932042 -63.809760 
5 295º 40′ 229.600 -206.945175 99.447747 

 
 

 
ES =0.159438 NS = 0.171224 

 
Table 6.3  Traverse components and sums 
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Table 6.4 shows the functions of the components for each line and their summations. 

 

Line ( )2
k

k

E
s

Δ
 ( )2

k

k

N
s

Δ
 k k

k

E N
s

Δ Δ  

1 58.069322 69.400678 63.482677 
2 85.212376 1.217624 -10.186101 
3 74.768213 87.601787 -80.931014 
4 57.049491 41.370509 48.581545 
5 186.525721 43.074279 -89.635154 

 a = 461.625124 b =242.664876 c = -68.688048 

 
Table 6.4  Functions of traverse components 

 

The Lagrange multipliers  and  are computed from equations 1k 2k (6.50) using a, b, c from 

Table 6.4,  and  from Table 6.3, and since this traverse begins and ends at the same 

point then  and  will both be zero. 

ES NS

ED ND
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−
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Table 6.5 shows the original traverse data, the residuals and adjusted traverse distances. 

 
Line Bearing Distance Traverse leg components Residual 

k kφ  ks  kEΔ  kNΔ  1 2k kv k E k Nk= Δ + Δ  
Adjusted 
Distance 

1 42º 27′ 127.470 86.035437 94.055858 -0.119 127.351 
2 96º 49′ 86.430 85.819028 -10.258619 -0.032 86.398 
3 137º 16′ 162.370 110.182189 -119.264002 0.048 162.418 
4 229º 35′ 98.420 -74.932042 -63.809760 0.089 98.509 
5 295º 40′ 229.600 -206.945175 99.447747 0.014 229.614 

 
Table 6.5  Adjusted traverse distances: Crandall's method 
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6.5.4. A rigorous single traverse adjustment method 

 

A traverse is a combination of two basic survey measurements, distances and directions.  

Ignoring the physical fact that the same measuring equipment is likely to be used on each leg 

of the traverse, distances and directions are independently determined quantities.  Bearings φ , 

angles α  and coordinates E,N are derived quantities and in general, cannot be considered as 

mathematically (or statistically) independent.  Restricting the adjustment method to single 

traverses, means angles at traverse points, derived from directions at those points, can be 

considered as mathematically independent quantities. 

 

Three conditions, expressing the mathematical relationship between traverse measurements 

and derived coordinates, may be deduced from Figure 6.6 below, in which  and  are 

"fixed stations" whose east and north coordinates are known and  are 

"floating stations" whose coordinates are to be determined from the traverse angles 

1P nP

2 3 4 1, , , , nP P P P −…

α  and 

distances s.  The starting bearing 0φ  and the finishing bearing nφ  are known. 

 

 

N

E

φ
φ

φ

φ

N

1
22

n-1

n

s

s

s

s
1

n-1

n-2

2ΔE

ΔE
2

1

2

φ
0

Fixed bearing α

α

α

α

1

n-1

n

2

° °

°

P
P

P

P

P

1

n-1

n

2

3
Fixe

d bearin
g
φ n

 
 

Figure 6.6  A closed traverse between two fixed stations 

 

© 2005, R.E. Deakin Notes on Least Squares (2005) 6–27 



RMIT University Geospatial Science 

 

These three conditions are: 

 

 (i) The starting bearing 0φ  plus all the measured angles should equal the known 

finishing bearing nφ , 

 (ii) The starting east coordinate plus all the east components of the traverse legs 

should equal the known east coordinate at the end point and 

 (iii) The starting north coordinate plus all the north components of the traverse legs 

should equal the known north coordinate at the end point. 

 

These conditions apply to all single traverses whether they start and end at different fixed 

points or close back on the starting point and can be expressed mathematically as 

 
0 1 2 3

1 1 2 3 1

1 1 2 3 1

n n

n

n n

a
E E E E E E
N N N N N N

n

φ α α α φ

−

−

+ + + + + =
+Δ +Δ +Δ + + Δ =
+Δ +Δ +Δ + + Δ =

"
"
"

 (6.52) 

Equations (6.52) are relationships between adjusted quantities 1 2, , , nα α α…  or functions of 

adjusted quantities 1 2 1, , , nE E E −Δ Δ Δ… 1 and 1 2, , , nN N N −Δ Δ Δ… . 

 

Traverses will generally misclose due to the small random errors in the angles (derived from 

the measured directions) and the measured distances.  To make the traverse mathematically 

correct, small corrections must be applied to the measurements to give adjusted quantities.  

These adjusted quantities are: 

 ss s v′= +  

 vαα α′= +  

where s and α  are adjusted distance and angle respectively, and s α′ ′  are the measured angle 

and distance, and  and sv vα  are small corrections.  Replacing the adjusted quantities with 

measurements and corrections allows the first member of equations (6.52) to be expressed as 

 ( ) ( ) ( ) ( )1 2 30 1 2 3 nn nv v v vα α α αφ α α α α+ + + + + + + + + =" φ  

and summing the measured angles and rearranging gives a simple expression for the 

summation of corrections to measured angles as 
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1 2 3 1n

v v v vα α α α f+ + + + ="  (6.53) 

where, apart from some multiple of 180º 

 1 0
1

n

n k
k

f n nφ φ α φ
=

⎛ ⎞ φ′ ′= − + = −⎜ ⎟
⎝ ⎠

∑  (6.54) 

1f  is the angular misclose in the traverse and equation (6.54) simply states that the sum of the 

corrections to the measured angles is equal to the angular misclose. 

 

The second and third members of equations (6.52) can also be expressed as a summation of 

corrections by considering the following 

 sin   and  cosE s N sφ φΔ = Δ =  

where  are east and north components of a traverse leg and ,E NΔ Δ

   and  ss s v vφφ φ′ ′= + = +  

where  and vφφ′  are "measured" bearing and correction respectively, hence we express the 

east and north components as 

 
( ) ( )
( ) ( )

sin

cos

s

s

E s v v

N s v v

φ

φ

φ

φ

′ ′Δ = + +

′ ′Δ = + +
 

Using the trigonometric expansions for ( )sin A B+  and ( )cos A B+ , and the approximations 

sin v vφ φ�  and c  since os 1vφ � vφ  is a small quantity gives 

 
( ){ }
( ){ }

sin cos sin cos sin cos sin cos

cos cos sin sin cos sin cos sin

s s s

s s s

E s v v v s s v v v v

N s v v v s s v v v v

φ φ φ φ

φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ

′ ′ ′ ′ ′ ′ ′ ′Δ = + + = + + +

′ ′ ′ ′ ′ ′ ′ ′Δ = + − = − + − φ

′

′
 

and since sv  and vφ  are both small then their product , hence 0sv vφ �

 
sin cos sin

cos sin cos
s

s

E s v s v

N s v s v
φ

φ

φ φ φ

φ φ φ

′ ′ ′ ′Δ = + + ′

′ ′ ′Δ = − + ′
 

Finally, the east and north components of a traverse leg computed using the measured 

quantities are sinE s φ′ ′Δ = ′  and cosN s φ′ ′Δ = ′ , and we may write 
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sin

cos
s

s

E E v N v

N N v E v
φ

φ

φ

φ

′ ′ ′Δ = Δ + Δ +

′ ′Δ = Δ − Δ + ′

n

n

n

n n

 (6.55) 

Substituting equations (6.55) into the second and third members of equations (6.52) gives 

  

( )
( )

( )
( )
( )

( )

1 1

2 2

1 1

1 1

2 2

1 1

1 1 1 1

2 2 2

1 1 1

1 1 1 1

2 2 2

1 1 1

sin

sin

sin

cos

cos

cos

n n

n n

s

s

n n s n

s

s

n n s n

E E v N v

E v N v

E v N v E

N N v E v

N v E v

N v E v N

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

φ

− −

− −

− − −

− − −

′ ′ ′+ Δ + Δ +

′ ′ ′+ Δ + Δ +

+

′ ′ ′+ Δ + Δ + =

′ ′ ′+ Δ − Δ +

′ ′ ′+ Δ − Δ +

+

′ ′ ′+ Δ − Δ + =

"

"

Letting the misclose in the east and north coordinates be 

 

1

2 1
1

1

3 1
1

n

n k n
k

n

n k
k

f E E E E E

f N N N N N

−

=

−

=

⎧ ⎫′ ′= − + Δ = −⎨ ⎬
⎩ ⎭
⎧ ⎫′ ′= − + Δ = −⎨ ⎬
⎩ ⎭

∑

∑
 (6.56) 

and recognising that 
1 1 2 1 2 3 1 2

, ,v v v v v v v v v
3φ α φ α α φ α α α= = + = + +  etc, and 

1

1

1
n

n

k

v
k

vφ α−

−

=

= ∑  then we 

may write 

 

( ) ( )1 1 1 2 2 1 2 3 3

1

1 1 2 2 3 3

1

1 1 2
1

sin sin sin

sin
k n

s s

n

n s n
k

v N v v v N v v v v N v

v N v f

α α α α α α

α

φ φ

φ
−

−

− −
−

′ ′ ′ ′ ′ ′Δ + + + Δ + + + + Δ + +

⎛ ⎞ ′ ′+ Δ + =⎜ ⎟
⎝ ⎠
∑

"

"

s φ

 

 
( ) ( )1 1 1 2 2 1 2 3 3

1

1 1 2 2 3 3

1

1 1 3
1

cos cos cos

cos
k n

s s

n

n s n
k

v E v v v E v v v v E v

v E v f

α α α α α α

α

φ φ

φ
−

−

− −
−

′ ′ ′ ′ ′ ′− Δ + − + Δ + − + + Δ + −

⎛ ⎞ ′ ′− Δ + =⎜ ⎟
⎝ ⎠
∑

"

"

s φ

c

 

Gathering together the coefficients of  and rearranging gives 
1 2 3
, , ,  etv v vα α α

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

sin sin sin sin
n

n

s s s n s

n n n n n

v v v v

N N v N N v N N v N N v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′+ − + − + − + + − =

"

"
1 2  (6.57) 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

cos cos cos cos
n

n

s s s n s

n n n n n

v v v v

E E v E E v E E v E E v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′− − − − − − − − − =

"

"
1 3  (6.58) 

Equations (6.53), (6.57) and (6.58) are the three equations that relate corrections to angles and 

distances, vα  and sv  respectively to angular and coordinate misclosures 1 2 3,  and f f f  given by 

equations (6.54) and (6.56).  In equation (6.53) the coefficients of corrections to angles are all 

unity, whilst in equations (6.57) and (6.58) the coefficients of the corrections are sines and 

cosines of bearings and coordinate differences derived from the measurements.  Equations 

(6.53), (6.57) and (6.58) are applicable to any single closed traverse. 

 

6.5.5. Application of Least Squares Adjustment of Observations Only to Particular Single 
Closed Traverses 

 

There are three types of single closed traverses. 
 

Type I Traverses that begin and end at different fixed points with fixed 

orienting bearings at the terminal points.  Figure 6.7(a). 
 

Type II Traverses that begin and end at the same point with a single 

fixed orienting bearing.  Figure 6.7(b) 
 

Type III Traverses that begin and end at the same point with a fixed 

datum bearing.  Figure 6.7(b) 
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Figure 6.7(a)  Type I traverse 
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Figure 6.7(b)  Type II traverse Figure 6.7(c)  Type III traverse 

 

Figures 6.7(a), 6.7(b) and 6.7(c) show three types of closed traverses.  In each case, the 

traverse consists of four(4) distances  to  and five(5) angles 1s 4s 1α  to 5α .  Traverse points 

shown with a triangle ( )Δ  can be regarded as fixed with known coordinates. 

 

In Figures 6.7(a) and 6.7(b) the bearing of the traverse line  is found by adding the 

observed angle 

1P P→ 2

1α  to the fixed bearing 0φ .  In both of these traverses five angles must be 

observed to "close" the traverse. 

 

In Figure 6.7(c) the bearing of the traverse line  is fixed and only four angles need be 

observed to close the traverse.  The angle 

1P → 2P

1α  at , clockwise from north to , is the bearing 

of the traverse line .  

1P 2P

1 2P P→ 1α  is used in the adjustment as an observation with a standard 

deviation of zero. 
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For any single closed traverse, the method of adjustment is as follows: 

 

(i) Calculate the coordinates of the traverse points by using the observed bearings and 

distances beginning at point . 1P

(ii) Calculate the angular and coordinate misclosures.  In each case, the misclose is the 

fixed value minus the observed or calculated value.  These three values are the 

elements 1 2,f f  and 3f  in the vector of numeric terms f 

(iii) Calculate the coefficients of the correction (or residuals) in equations (6.53), (6.57) and 

(6.58).  These coefficients are either zero or unity for equation (6.53), or sines and 

cosines of observed bearings together with coordinate differences in equations (6.57) 

and (6.58).  These values are the elements of the coefficient matrix A 

(iv) Assign precisions (estimated standard deviations squared) of the observations.  These 

will be the diagonal elements of the cofactor matrix Q 

 Note: In Type III traverses where the bearing  is fixed, the angle 1P P→ 2 1α  (which is 

not observed) is assigned a variance (standard deviation squared) of zero. 

(v) Form a set of three(3) normal equations ( )T =AQA k f  

(vi) Solve the normal equations for the three(3) Lagrange multipliers  and  which 

are the elements of the vector k from 

1 2,k k 3k

( ) 1T −
=k AQA f  and then compute the vector of 

residuals (corrections) from  T=v QA k

(vii) Calculate the adjusted bearings and distances of the traverse by adding the corrections 

to the observed angles and distances. 
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6.5.6. Example of Traverse Adjustment using Least Squares Adjustment of Observations 
Only 

 

Figure 6.8 is a schematic diagram of a traverse run between two fixed stations A and B and 

oriented at both ends by angular observations to a third fixed station C. 

 

The bearings of traverse lines shown on the diagram, unless otherwise indicated, are called 

"observed" bearings and have been derived from the measured angles (which have been 

derived from observed theodolite directions) and the fixed bearing AC.  The difference 

between the observed and fixed bearings of the line BC represents the angular misclose.  The 

coordinates of the traverse points D, E and F have been calculated using the observed 

bearings and distances and the fixed coordinates of A.  The difference between the observed 

and fixed coordinates at B represents the coordinate misclosures. 

 

In this example estimated standard deviations of measured angles α  are  and for 

measured distances s are  where ppm is parts per million. 

5sα ′′=

10mm + 15ppmss =
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Figure 6.8  Traverse diagram showing field measurements, derived values and fixed values. 
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Step 1:  Calculation of misclosures and formation of vector f

 

From equations (6.54) and (6.56) the angular and coordinate misclosures are the elements 

1 2 3,  and f f f  of the vector of numeric terms f.  These misclosures may be characterised as 

misclose = fixed - observed 

angular misclose: 1

236 37 46 236 38 01
15

n nf φ φ′= −

′ ′′ ′ ′′= −
′′= −

D D

 

east misclose: 2

6843.085 6843.030
0.055 m
5.5 cm

n nf E E′= −
= −
=
=

 

north misclose: 3

7154.700 7154.779
0.079 m
7.9 cm

n nf N N ′= −
= −
= −
= −

 

vector of numeric terms:  
15 sec

5.50 cm
7.9 cm

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
−⎢ ⎥⎣ ⎦

f

Note that the units of the numeric terms are seconds of arc (sec) and centimetres (cm) 

 

 

Step 2:  Form the coefficient matrix A of the equations (6.16) Av = f

 

The first row of A contains coefficients of zero or unity from equation (6.53) 

 
1 2 3 1n

v v v v fα α α α+ + + + ="  

The second row of A contains the coefficients sin kφ′  and ( ) 100
n kN N

ρ
⎛′ ′− ⎜

⎞
⎟′′⎝ ⎠

from equation 

(6.57). 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

sin sin sin sin
n

n

s s s n s

n n n n n

v v v v

N N v N N v N N v N N v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′+ − + − + − + + − =

"

"
1 2  
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Note that the coefficients of the distance residuals are dimensionless quantities and the 

coefficients of the angle residuals have the dimensions of sec/cm where 180 3600ρ
π

′′ = ×  is 

the number of seconds in one radian. 

 

The third row of A contains the coefficients cos kφ′  and ( ) 100
n kE E

ρ
⎛′ ′− − ⎜

⎞
⎟′′⎝ ⎠

from equation 

(6.58). 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 3 1

1 2 3

1 2 3 1

1 2 3 1

cos cos cos cos
n

n

s s s n s

n n n n n

v v v v

E E v E E v E E v E E v fα α α α

φ φ φ φ
−

−

−

−

′ ′ ′ ′+ + + +

′ ′ ′ ′ ′ ′ ′− − − − − − − − − =

"

"
1 3  

Note that the coefficients of the distance residuals are dimensionless quantities and the 

coefficients of the angle residuals have the dimensions of sec/cm where 180 3600ρ
π

′′ = ×  is 

the number of seconds in one radian.  The equation =Av f  is 

 

angles

0 0 0 0 1 1 1 1 1 1

0.9382 0.9309 0.2914 0.9147 0.7860 0.3829 0.5658 0.3065 0 5.50

0.3462 0.3653 0.9566 0.4040 2.3311 1.2388 0.7729 0.6939 0 7.90

distances

v

v

v

v

v

v

v

v

v

↑

−↓

− − − − =↑

− − − − − − −

↓

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

5

−

⎡
⎢

⎣

4.6 cm 2.5 cm 1.8 cm 3.3 cm       5       5          5         5    5′′ ′′ ′′ ′′ ′′

⎤
⎥

⎢ ⎥
⎢ ⎥⎦

 

Note that the numbers below the columns of A are the estimates of the standard deviations of 

the distances or angles associated with the coefficients. 

 

 

Step 3:  Form the normal equations

 

The normal equations are given by equations (6.25) as ( )T =AQA k f  

where  is the cofactor matrix containing estimates of the variances of the 

measurements.  Q and the weight matrix are W are square diagonal matrices, i.e., all off-

diagonal elements are zero and since weights are inversely proportional to the estimates of the 

1−=Q W
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variances, the diagonal elements of 2 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4 5

1 1 1 1 1 1 1 1 1

s s s s ss s s s s s s s sα α α α

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

Q  

where the first 4 elements relate to the angles and the remaining 5 elements relate to the 

distances.  Now consider a diagonal matrix that denoted Q  whose diagonal elements are the 

square-roots of the elements of Q and =Q Q Q  and another matrix =A A Q .  Each 

element of A  is the original element of A multiplied by the estimate of the standard deviation 

associated with the particular element and the normal equations are given by ( )T =AA k f  

where 

 
0 0 0 0 5 5 5 5

4.3155 2.3272 0.5245 3.0186 1.9145 1.9145 2.8288 1.5324 0
1.5926 0.9134 1.7219 1.3333 6.1939 6.1939 3.8644 3.4696 0

⎡ ⎤
⎢ ⎥= − − − −⎢ ⎥
− − − − − − −⎢ ⎥⎣ ⎦

A
5

 

and 
125 51.0285 125.9168

51.0285 62.8875 64.2375
125.9168 64.2375 209.2995

T

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
−⎢ ⎥⎣ ⎦

AA  

 

 

Step 4:  Solve the normal equations for the vector of Lagrange multipliers k

 

From equations (6.47) and with the modification mentioned above 

 ( ) ( )1 1
0.0219 0.0063 0.0112 15

0.0250 0.0039 5.5
symmetric 0.0127 7.9

T T− −
−⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥
−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

k AQA f AA f  

and 
0.3825
0.0738
0.2906

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
−⎢ ⎥⎣ ⎦

k  
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Step 5:  Calculation of residuals and adjusted traverse dimensions

 

The residuals are obtained from equation (6.24)  T=v QA k

 

Since the cofactor matrix Q is diagonal, the individual residuals can be calculated from 

 ( )2
1 1 2 2 3 3j j j j jv s a k a k a k= + +  (6.59) 

where 

  are elements of the coefficient matrix A 1 2 3, ,j ja a a j

  are the elements of the vector k 1 2 3, ,k k k

  is the estimate of the variance of the j2
js th measurement 

For example, the residual for the second distance ( )2j =  is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }22.5 0 0.3825 0.9309 0.0738 0.3653 0.2906 0.23 cm− + + − = −  

and the residual for the third measured angle ( )7j =  is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }25 1 0.3825 0.5658 0.0738 0.7729 0.2906 4.99′′− + − + − − = −  

Exactly the same result can be obtained by using the estimate of the standard deviations  

and the elements of the matrix 

js

A  

 ( )1 1 2 2 3 3j j j j jv s a k a k a k= + +  (6.60) 

Both methods give 

 

3.59 cm
0.23
0.97 distances
2.01 cm
5.92
1.27
4.99 angles
5.09
9.56

↑⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥ ↓⎢ ⎥
⎢ ⎥′′= ↑
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥
−⎢ ⎥
⎢ ⎥′′− ↓⎣ ⎦

v  
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The residuals for the bearings are the cumulative residuals for the angles up to the particular 

traverse line.  They are 

 

5.92
4.65
0.34
5.43

14.99

φ

′′⎡ ⎤
⎢ ⎥
⎢ ⎥

= −⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥′′−⎣ ⎦

v  

Applying these residuals (or corrections) to the measured quantities gives the adjusted 

traverse dimensions as 

 
Line Bearing Distance 

k kφ  ks  

1 110º 27′ 25.9′′ 2401.645 
2 68º 34′ 22.6′′ 1032.338 
3 163º 03′ 31.7′′ 559.032 
4 113º 49′ 44.6′′ 1564.703 

 
Table 6.6  Adjusted traverse distances 
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Figure 6.9  Traverse diagram showing adjusted measurements. 
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7. LINEARIZATION USING TAYLOR'S THEOREM AND THE DERIVATION OF 
SOME COMMON SURVEYING OBSERVATION EQUATIONS 

In many surveying "problems" the solution depends upon selection of a mathematical model 

suitable to the problem, and using this, together with the observations (or measurements) 

obtain a solution. 

 

For example, a surveyor is required to determine the location (the coordinates) of a point.  

From this "unknown" point, they can see three known points (i.e., points of known 

coordinates).  Understanding geometric principles, the surveyor measures the directions to 

these three known points with a theodolite, determines the two angles α  and β  between the 

three lines and "solves the problem".  In surveying parlance, this technique of solution of 

position is known as a resection; the mathematical model is based on geometric principles and 

the observations are the directions, from which the necessary angles are obtained for a 

solution. 

 

Choosing a resection, as an example of a "surveying problem" is appropriate, since it 

demonstrates the case of determining quantities (the coordinates of the unknown point) from 

indirect measurements.  That is, the surveyor's measurements of directions are indirect 

measurements of coordinate differences between the unknown point and the known points. 

 

In many surveying problems, the observations exceed the necessary number required for a 

unique solution.  Again, using a resection as an example, consider the case where the surveyor 

(at an unknown point) measures the directions to four known points.  There are now multiple 

solutions for the resection point, since the four directions give rise to three angles, exceeding 

the minimum geometric requirements for a unique solution.  That is, there is a redundancy in 

the mathematical model.  In this case of the resection, and other surveying problems where 

there are redundant measurements, the method of least squares can be employed to obtain the 

best estimate of the "unknowns". 

 

Least squares (as a method of determining best estimates), depends upon the formation of sets 

of observation equations and their solution.  The normal techniques of solution of systems of 

equations require that the sets of observation equations must be linear, i.e., "unknowns" 
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linearly related to measurements.  This is not always the case.  For example, in a resection, 

the measurements, directions ikα  from the unknown point  to known points , are non-

linear functions of the coordinate differences (the unknowns). 

iP kP

 

The observation equations for observed directions in a mathematical model of a resection 

have the general form 

 1tan k i
ik ik i

k i

E Ev z
N N

α − ⎛ −
+ + = ⎜ −⎝ ⎠

⎞
⎟  (7.1) 

 ikα  are the observed directions from the resection point  to the known points , iP kP

  are the residuals (small corrections) associated with observed directions, ikv

  is an orientation "constant"; the bearing of the Reference Object (RO) for the 

set of observed directions, 

iz

 ,  are the east and north coordinates of the known points, and kE Nk

i ,  are the east and north coordinates of the resection point. iE N

 

Clearly, in this case, the measurements ikα  are non-linear functions of the unknowns  

and any system of equations in the form of 

,i iE N

(7.1) would be non-linear and could not be solved 

by normal means.  Consequently, whenever the equations in a mathematical model are non-

linear functions linking the measurements with the unknowns, some method of linearization 

must be employed to obtain sets of linear equations. 

 

The most common method of linearization is by using Taylor's theorem to represent the 

function as a power series consisting of zero order terms, 1st order terms, 2nd order terms and 

higher order terms.  By choosing suitable approximations, second and higher-order terms can 

be neglected, yielding a linear approximation to the function.  This linear approximation of 

the mathematical model can be used to form sets of linear equations, which can be solved by 

normal means. 
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7.1. Taylor's Theorem 

This theorem, due to the English mathematician Brook Taylor (1685–1731) enables the value 

of a real function ( )f x  near a point x a=  to be estimated from the values ( )f a  and the 

derivatives of ( )f x  evaluated at x a= .  Taylor's theorem also provides an estimate of the 

error made in a polynomial approximation to a function.  The Scottish mathematician Colin 

Maclaurin (1698–1746) developed a special case of Taylor's theorem, which was named in his 

honour, where the function ( )f x  is expanded about the origin 0x a= = .  The citations 

below, from the Encyclopaedia Britannica give some historical information about Taylor and 

Maclaurin. 

 

Taylor, Brook (b. Aug. 18, 1685, Edmonton, Middlesex, Eng.– d. Dec. 29, 1731, 
London), British mathematician noted for his contributions to the development of 
calculus.  
In 1708 Taylor produced a solution to the problem of the centre of oscillation.  The 
solution went unpublished until 1714, when his claim to priority was disputed by the 
noted Swiss mathematician Johann Bernoulli.  Taylor's Methodus incrementorum directa 
et inversa (1715; "Direct and Indirect Methods of Incrementation") added to higher 
mathematics a new branch now called the calculus of finite differences.  Using this new 
development, he was the first to express mathematically the movement of a vibrating 
string on the basis of mechanical principles.  Methodus also contained the celebrated 
formula known as Taylor's theorem, the importance of which remained unrecognized 
until 1772.  At that time the French mathematician Joseph-Louis Lagrange realized its 
importance and proclaimed it the basic principle of differential calculus. 
A gifted artist, Taylor set forth in Linear Perspective (1715) the basic principles of 
perspective.  This work and his New Principles of Linear Perspective contained the first 
general treatment of the principle of vanishing points.  Taylor was elected a fellow of the 
Royal Society of London in 1712 and in that same year sat on the committee for 
adjudicating Sir Isaac Newton's and Gottfried Wilhelm Leibniz's conflicting claims of 
priority in the invention of calculus.  
 
Maclaurin, Colin (b. February 1698, Kilmodan, Argyllshire, Scot.–d. June 14, 1746, 
Edinburgh), Scottish mathematician who developed and extended Sir Isaac Newton's 
work in calculus, geometry, and gravitation.  A child prodigy, he entered the University 
of Glasgow at age 11.  At the age of 19, he was elected professor of mathematics at 
Marischal College, Aberdeen, and two years later he became a fellow of the Royal 
Society of London.  At this time he became acquainted with Newton.  In his most 
important work, Geometrica Organica; Sive Descriptio Linearum Curvarum Universalis 
(1720; "Organic Geometry, with the Description of the Universal Linear Curves"), 
Maclaurin developed several theorems similar to some in Newton's Principia, 
introduced the method of generating conics (the circle, ellipse, hyperbola, and parabola) 
that bears his name, and showed that certain types of curves (of the third and fourth 
degree) can be described by the intersection of two movable angles.  On the 
recommendation of Newton, he was made professor of mathematics at the University of 
Edinburgh in 1725.  In 1740 he shared, with the mathematicians Leonhard Euler and 
Daniel Bernoulli, the prize offered by the Académie des Sciences for an essay on tides.  
His Treatisw of Fluxions (1742) was written in reply to criticisms by George Berkeley of 
England that Newton's calculus was based on faulty reasoning.  In this essay he showed 
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that stable figures for a homogeneous rotating fluid mass are the ellipsoids of revolution, 
later known as Maclaurin's ellipsoids.  He also gave in his Fluxions, for the first time, 
the correct theory for distinguishing between maxima and minima in general and pointed 
out the importance of the distinction in the theory of the multiple points of curves.  The 
Maclaurin series, a special case of the Taylor series, was named in his honour.  In 1745, 
when Jacobites (supporters of the Stuart king James II and his descendants) were 
marching on Edinburgh, Maclaurin took a prominent part in preparing trenches and 
barricades for the city's defense.  As soon as the rebel army captured Edinburgh, 
Maclaurin fled to England until it was safe to return.  The ordeal of his escape ruined his 
health, and he died at age 48.  Maclaurin's Account of Sir Isaac Newton's Philosophical 
Discoveries was published posthumously, as was his Treatise of Algebra (1748).  "De 
Linearum Geometricarum Proprietatibus Generalibus tractatus" ("A Tract on the General 
Properties of Geometrical Lines"), noted for its elegant geometric demonstrations, was 
appended to his Algebra.  Copyright 1994-1999 Encyclopædia Britannica 

 

Taylor's theorem may be expressed in the following form 

 

( ) ( )

( )
( )

( )

2 3

1
1

( ) ( ) ( ) ( ) ( ) ( )
2! 3!

( )
1 !

n
n

n

x a x a
f x f a x a f a f a f a

x a
f a R

n

−
−

− −
′ ′′ ′′′= + − + + +

−
+ +

−

 (7.2) 

where nR  is the remainder after n terms and lim 0nn
R

→∞
=  for ( )f x  about x a=  

  are derivatives of the function( ) , ( ) , etcf a f a′ ′′ ( )f x  evaluated at x a= . 

 

Taylor's theorem can also be expressed as power series 

 ( ) ( ) ( ) ( )
0 !

kn
k

k

x a
f x f a

k=

−
= ∑  (7.3) 

where ( ) ( )kf a  denotes the kth derivative of the function ( )f x  evaluated at x a=  and 

( ) ( )0f a  is the function ( )f x  evaluated at x a= , and 0! 1= . 

 

Other forms of Taylor's theorem may be obtained by a change of notation, for example: let 

x a h= + , then ( ) ( )f x f a h= +  and x a h− = .  Substitution into equation (7.2) gives 

 
( )

( )
( )

2 3

1
1

( ) ( ) ( ) ( ) ( )
2! 3!

( )
1 !

n
n

n

h hf x f a h f a h f a f a f a

h f a R
n

−
−

′ ′′ ′′′= + = + + + +

+ +
−

 (7.4) 

This may be a more convenient form of Taylor's theorem for a particular application. 

© 2005, R.E. Deakin Notes on Least Squares (2005) 7–4 



RMIT University Geospatial Science 

 

 

Inspection of equations (7.2), (7.3) and (7.4) show that Taylor's theorem can be used to 

expand a non-linear function (about a point) into a linear series.  Expansions of this form, also 

called Taylor's series, are a convergent power series approximating ( )f x . 

 

Taylor's series for functions of two variables 

 

Say ( , )f x yφ =  then the Taylor series expansion of the function φ  about x a=  and y b=  is 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2 2
2 2

,

1
2!

f ff a b x a y b
x y

f f f fx a y b x a y b
x y x y

φ ∂ ∂
= + − + −

∂ ∂

⎧ ⎫∂ ∂ ∂ ∂
+ − + − + − −⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭

+

)

 (7.5) 

where ( ,f a b  is the function φ  evaluated at x a=  and y b=  

 
2

2, , , etf f f
x y x
∂ ∂ ∂
∂ ∂ ∂

c  are partial derivatives of the function φ  evaluated at x a=  and 

y b= . 

 

Taylor's series for functions of three variables 

 

Say ( , , )f x y zφ =  then the Taylor series expansion of the function φ  about x a= , y b=  and 

 z c=

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2 2
2 2 2

2 2 2

, ,

1
2!

f f ff a b c x a y b z c
x y z

f f fx a y b z c
x y z

f f f f f fx a y b x a z c y b z c
x y x z y z

φ ∂ ∂ ∂
= + − + − + −

∂ ∂ ∂

⎧ ∂ ∂ ∂
+ − + − + −⎨ ∂ ∂ ∂⎩

⎫∂ ∂ ∂ ∂ ∂ ∂
+ − − + − − + − − +⎬∂ ∂ ∂ ∂ ∂ ∂ ⎭

 (7.6) 

where ( , , )f a b c  is the function φ  evaluated at x a= , y b=  and z c=  

 
2

2, , , , etf f f f
x y z x
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

c  are partial derivatives evaluated at x a= , y b=  and z c= . 
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Extensions to four or more variables follow a similar pattern.  Equations (7.5) and (7.6) show 

only terms up to the 2nd order; no remainder terms are shown. 

 

7.2. Linear Approximations to Functions using Taylor's Theorem 

In the Taylor expansions of functions shown above, suppose that the variables , , ,  etcx y z  

are expressed as 0x x x= + Δ , 0y y y= + Δ ,  where  are 

approximate values and 

0 etcz z z= + Δ 0 0 0, , ,  etcx y z

, ,x yΔ Δ   are small corrections. ,  etczΔ

 

The Taylor series expansion of a single variable can be expressed as 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 32 30 0 0 0
2 3

2 3
2 30

2 3

0  higher order terms

df d f d ff x f x x x x x x x
dx dx dx

df d f d ff x x x x
dx dx dx
dff x x
dx

φ = = + − + − + − +

= + Δ + Δ + Δ +

= + Δ +  

where the derivatives 
2 3

2 3, , ,  edf d f d f
dx dx dx

tc  are evaluated at the approximation 0x .  If the 

correction xΔ  is small, then ( )  will be exceedingly small and the higher 

order terms may be neglected, giving the following linear approximation 

( )2 3, ,  x xΔ Δ etc

For ( )f xφ =  0( ) ( ) dff x f x x
dx

φ = + Δ  (7.7) 

Using similar reasoning, linear approximations can be written for functions of two and three 

variables. 

For ( ),f x yφ =  ( )0 0( , ) , f ff x y f x y x y
x y

φ ∂ ∂
= + Δ + Δ

∂ ∂
 (7.8) 

For ( ), ,f x y zφ = , ( )0 0 0( , , ) , , f f ff x y z f x y z x y z
x y z

φ ∂ ∂
= + Δ + Δ

∂
+ Δ

∂ ∂ ∂
 (7.9) 

Similar linear approximations can be written for functions of four or more variables.  In 

equations (7.7), (7.8) and (7.9) the derivatives are evaluated at the approximations 0 0, , 0x y z . 
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Generalizing this linear form gives, for ( )1 2 3, , , nf x x x xφ =  

( )0 0 0 0
1 2 3 1 2 3 1 2 3

1 2 3

( , , , ) , , ,n n
n

n
f f ff x x x x f x x x x x x x x f
x x x

φ
x

∂ ∂ ∂
= + Δ + Δ + Δ

∂
+ + Δ

∂ ∂ ∂ ∂
 (7.10) 

This equation can be written in matrix form 

 ( ) ( )0f fφ = + Δx x j x  (7.11) 

where x is a vector of variables,  a vector of approximate values of the variables, j is a row 

vector of partial derivatives and  is a column vector of corrections. 

0x

Δx

 

Suppose this generalized form, equation (7.11), is extended to the general case of m variables 

1 2 3, , , my y y y  and each variable ky  is a function of a set of variables 1 2 3, , , nx x x x  i.e., 

 

( )
( )

( )

1 1 1 2 3

2 2 1 2 3

1 2 3

, , ,
, , ,

, , ,

n

n

m m n

y f x x x x
y f x x x x

y f x x x x

=
=

=

 

Expressing each variable ky  in a linearized form gives 

 

0 1 1 1
1 1 1 2

1 2

0 2 2 2
2 2 1 2

1 2

0
1 2

1 2

n
n

n
n

m m m
m m

n

y y y

n

y y x x x
x x x
y y yy y x x
x x x

y y y

x

y y x x
x x x

∂ ∂ ∂
= + Δ + Δ + + Δ

∂ ∂ ∂
∂ ∂ ∂

= + Δ + Δ + + Δ
∂ ∂ ∂

∂ ∂ ∂
= + Δ + Δ + + Δ

∂ ∂ ∂
x

 (7.12) 

Equations (7.12) can be expressed in matrix notation as 

 0= + Δy y J x  (7.13) 

where  

 y is an (m,1) vector of (unknown) function values, [ ]1 2
T

my y y=y  

 0y  is an (m,1) vector of approximate values of the functions, 0 0 0 0
1 2

T

my y y⎡ ⎤= ⎣ ⎦y  

  is an (n,1) vector of corrections to the approx. values, Δx [ ]1 2
T

nx x xΔ = Δ Δ Δx  
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 J is the (m,n) the Jacobian matrix of partial derivatives 

 

1 1 1 1

1 2 3

2 2 2 2

1 2 3

1 2 3

n

n

m m m m

n

y y y y
x x x x
y y y y
x x x x

y y y y
x x x x

∂ ∂ ∂ ∂⎡ ⎤
⎢ ⎥∂ ∂ ∂ ∂
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥

⎢ ⎥∂ ∂ ∂ ∂= ⎢ ⎥
⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

J  

 

7.3. The Derivation of some Common Surveying Observation Equations 

Consider Figure 7.1.   is the instrument point and directions iP ikα  and distances  have been 

observed to stations .   is the Reference Object (RO) and the direction 

.  A bearing is assigned to the RO and bearings to all other stations may be 

obtained by adding the observed directions to the bearing of the RO. 

iks

1 2 3, , kP P P P 1P

1 0 00 00iα ′ ′′=

 

E

N

P3

Pi

P1
P2

Pk

(RO)

z

φik

ikα

α i2
αα

s
s

s

s

i1
i1

i2

i3

ik
αi3

i

EEEkkk - E- E- Eiii

N k
- N

i

E'

N'

 
 

Figure 7.1  Observed directions α  and distances s from  iP

 

 ikα  observed direction  to  iP kP

 ikφ  bearing  to  iP kP
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  distance  to  iks iP kP

  orientation constant for directions at  (bearing of the RO) iz iP

 ikθ  "observed" bearing ik ik izθ α= +  

 ,  coordinates of  iE Ni

k

iP

 ,  coordinates of  kE N kP

 

From Figure 7.1 the bearings ikφ  and distances  are non-linear functions of the coordinates 

of points  and  

iks

iP kP

 1tan k i
ik

k i

E E
N N

φ − ⎛ ⎞−
= ⎜ −⎝ ⎠

⎟

)

 (7.14) 

 ( ) (2
ik k i k is E E N N= − + − 2

0

 (7.15) 

With  and  where  are approximate values of the 

coordinates and  are small corrections, linear approximations of 

0E E E= + Δ 0N N N= + Δ 0 ,E N

,E NΔ Δ ikφ  and  can be 

written as 

iks

 0 ik ik ik ik
ik ik k k i i

k k i

E N E N
E N E iN
φ φ φφ φ ∂ ∂ ∂

= + Δ + Δ + Δ + Δ
∂ ∂ ∂

φ∂
∂

 (7.16) 

 0 ik ik ik ik
ik ik k k i i

k k i

s s ss s E N E N
E N E
∂ ∂ ∂

= + Δ + Δ + Δ + Δ
∂ ∂ ∂ i

s
N
∂
∂

 (7.17) 

where 0
ikφ  and  are approximate bearings and distances respectively, obtained by 

substituting the approximate coordinates  into equations 

0
iks

0 0 0, , ,k k i iE N E N 0 (7.14) and (7.15). 

 

The partial derivatives in equations (16) are evaluated in the following manner. 

 

Using the relationships: 1
2 2

1tan       and      
1

du dvv ud du d u dx dxu
dx u dx dx v v

−
−⎛ ⎞= =⎜ ⎟+ ⎝ ⎠

 

The partial derivative ik

kE
φ∂
∂
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 ( )
( ) ( ) ( )

2

2 2
1

1

k iik k i k i

k k k i k i k i k ik i

k i

N NE E N N
E E N N N N E E N NE E

N N

φ −⎛ ⎞∂ ∂ −
= =⎜ ⎟∂ ∂ − − + − −⎛ ⎞ ⎝ ⎠−+ ⎜ ⎟−⎝ ⎠

2 2
−  

giving 

 
( ) ( )2 2 2

cosik k i k i ik
ik

k ikk i k i

N N N N b
E sN N E E iks
φ φ∂ − −

= = =
∂ − + −

=  (7.18) 

Similarly 

 ( )
( ) ( )

( )
2 2 2

sink i k iik ik
ik

k ikk i k i

E E E E
a

N sN N E E
φ φ− − − −∂

= = =
∂ − + − iks

−
=  (7.19) 

 ( )
( ) ( )

( )
2 2 2

cosk i k iik ik
ik

i ikk i k i

N N N N
b

E sN N E E
φ φ− − − −∂

= = =
∂ − + − iks

−
= −  (7.20) 

 ( )
( ) ( )

( )
2 2 2

sink i k iik ik
ik

i ikk i k i

E E E E
a

N sN N E E
φ − −∂

= = =
∂ − + − iks

φ
= −

b

 (7.21) 

 and ik ika  are known as direction coefficients. 

 

The partial derivatives of equation (7.17) are evaluated in the following manner 

 

The partial derivative ik

k

s
E
∂
∂

 

 ( ) ( ) ( )
1

2 2 21 2 s
2

ik k i
k i k i k i ik

k ik

s EE E N N E E d
E s

φ
−∂ −⎡ ⎤= − + − − = = =⎣ ⎦∂

in ik
E  (7.22) 

Similarly 

 cosik k i
ik ik

k ik

s N N c
N s

φ∂ −
= =

∂
=  (7.23) 

 ( ) sink iik
ik ik

i ik

E Es d
E s

φ
− −∂

= = − =
∂

−  (7.24) 

 ( ) cosk iik
ik ik

i ik

N Ns c
N s

φ
− −∂

= = −
∂

= −  (7.25) 
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 and ik ikc d  are known as distance coefficients. 

 

7.3.1. Observation equation for measured directions 

An observation equation, relating observed directions to coordinates  and  can be written 

as 

iP kP

 1tan k i
ik ik i ik

k i

E Ev z
N N

α φ − ⎛ −
+ + = = ⎜ −⎝ ⎠

⎞
⎟  (7.26) 

where are the residuals (small corrections) associated with observed directions.  Using 

equation 

ikv

(7.16) together with the partial derivatives given in equations (7.18) to (7.21) gives a 

linear approximation of the observation equation for an observed direction 

 0
ik ik i ik k ik k ik i ik i ikv z a N b E a N b Eα φ+ + = Δ + Δ − Δ − Δ +  (7.27) 

where ( )
2

sink i ik
ik

ik ik

E E
a

s s
φ− − −

= =  and 2

cosk i i
ik

ik ik

N Nb
s s

kφ−
= =  are the direction coefficients

 

7.3.2. Observation equation for measured distances 

An observation equation, relating observed distances to coordinates  and  can be written 

as 

iP kP

 ( ) ( )2
ik ik k i k is v E E N N+ = − + − 2  (7.28) 

where are the residuals (small corrections) associated with observed distances.  Using ikv

(7.17) together with the partial derivatives given in equations (7.22) to (7.25) gives a linear 

approximation of the observation equation for an observed distance 

  (7.29) 0
ik ik ik k ik k ik i ik i iks v c N d E c N d E s+ = Δ + Δ − Δ − Δ +

where cosk i
ik ik

ik

N Nc
s

φ−
= =  and sink i

ik ik
ik

E Ed
s

φ−
= =  are the distance coefficients
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7.4. An Example of Taylor's Theorem in Practice 

Figure 7.2 shows a point P, whose coordinates are unknown, intersected by bearings from 

stations A and B whose coordinates are known. 

 

A

B

P

N

E

φ

φA

B

N

N
⊗

 
Figure 7.2  Bearing intersection 

Coordinates 

A:  B:  12273.910 E
29612.310 N

12875.270 E
28679.600 N

 

Bearings 

81 01 23Aφ ′ ′′=   34 47 52Bφ ′ ′= ′

 

Approximate coords P:  13677 E
29834 N

 

The information given above can be used to compute the coordinates of P by using an 

iterative technique employing linearized observation equations approximating the bearings 

 and A Bφ φ .  These observation equations [see equation (7.27)] have been derived using 

Taylor's theorem. 

 

In general, a bearing is a function of the coordinates of the ends of the line, i.e., 

 (1tan , , ,k i
ik k k i i

k i

E E )f E N E N
N N

φ − ⎛ ⎞−
= =⎜ ⎟−⎝ ⎠

 (7.30) 

where subscripts i and k represent instrument and target respectively.  In this example 

(intersection) A and B are instrument points and are known and P is a target point and is 

unknown hence 

 ( ),ik k kf E Nφ =  

is a non-linear function of the variables  and  only (the coordinates of P).  Using 

equations 

kE kN

(7.26) and (7.27) with modifications 0i iE NΔ = Δ =  since the coordinates of the 

instrument points are known gives 

 0
ik ik k ik k ika N b Eφ φ= Δ + Δ +  (7.31) 
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0

k k kE E E= + Δ 0
k k kN N N= + Δ k,  and , 0 0,k kE N ,kE NΔ Δ  are approximate coordinates and 

small corrections respectively.  ( )
2

sink i ik
ik

ik ik

E E
a

s s
φ− − −

= =  and 2

cosk i i
ik

ik ik

N Nb
s s

kφ−
= =  are 

direction coefficients and 0
ikφ  is an approximate bearing.  Note that 0

ikφ  and the direction 

coefficients  and  are computed using the approximate coordinates of P. ika ikb

 

Using equation (7.31), two equations for bearings and A Bφ φ  may be written as 

 
0

0
A A P A P

B B P B P

a N b E

a N b E
A

B

φ φ

φ φ

= Δ + Δ +

= Δ + Δ +
 

These equations can be rearranged and expressed in matrix form as 

 
0

0
A A P A A

B B P B B

a b N
a b E

φ φ
φ φ

Δ ⎡ ⎤−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥Δ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

or =Cx u  

where C is a matrix of direction coefficients, x is the vector of corrections to the approximate 

coordinates of P and u is a vector of numeric terms (observed bearing – computed bearing).   

 

The solution for the corrections in vector x is given by 

  1−=x C u

From the information given with Figure 7.2 the computed bearings ( )0
ikφ  and distances ( )0

iks  

using the approximate coordinates of P are 

 

 AP: 81º 01' 17.1" BP: 34º 46' 47.8" 

  1420.5 m  1405.5 m 

and the numeric terms in vector u are 

 

0

81 01 23 81 01 17.1
5.9

A A Au φ φ= −

′ ′′ ′ ′′= −
′′=

  

0

34 47 52 34 46 47.8
64.2

B B Bu φ φ= −

′ ′′ ′ ′′= −
′′=
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With the elements of x (the corrections to the approximate coordinates of P) in centimetres 

and the elements of u (the differences in observed and computed bearings) in seconds of arc 

 cm's seconds
    

=
↓

Cx u

 

the elements of the coefficient matrix C will be computed in sec cm  (seconds per centimetre) 

to maintain consistency of units so that 

 

1

cm cm sec sec

−=
↓

x C u

 

Note that if the units (or dimensions) of the elements of C are sec cm  then the units of the 

elements of the inverse  are 1−C cm sec . 

 

The elements of C are the direction coefficients and with distances  in centimetres 0
iks

 
0

0

sin ik
ik

ik

a
s
φ ρ− ′′= ×  and 

0

0

cos ik
ik

ik

b
s
φ ρ′′= ×  where 180 3600ρ

π
′′ = ×  

giving 
( )

( ) ( )
( )

( ) ( )

sin 81 01 17.1
1.43426 sec cm

1420.5 100

cos 81 01 17.1
0.22662 sec cm

1420.5 100
0.83714 sec cm

1.20538 sec cm

A

A

B

B

a

b

a
b

ρ

ρ

′ ′′−
′′= × = −

′ ′′
′′= × =

= −
=

 

The matrix equation  is =Cx u

  
1.43426 0.22662 5.9
0.83714 1.20538 64.2

P

P

N
E

Δ− ⎡ ⎤⎡ ⎤
=⎢ ⎥⎢ ⎥ Δ−⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎤
⎥
⎦

and the solution  is 1−=x C u

  
0.78316 0.14724 5.9 4.83 cm
0.54391 0.93187 64.2 56.62 cm

P

P

N
E

Δ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢Δ −⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

© 2005, R.E. Deakin Notes on Least Squares (2005) 7–14 



RMIT University Geospatial Science 

 

giving the "adjusted" coordinates of P as 

  
0

0

29834.400 0.048 29834.048

13677.000 0.566 13677.566
P P P

P P P

N N N

E E E

= + Δ = + =

= + Δ = + =

These are the "new" approximate coordinates for P.  A further iteration will show that the 

corrections to these values are less than 0.5 mm, hence the values above could be regarded as 

exact. 
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8. THE STANDARD ERROR ELLIPSE 

After a Least Squares Adjustment of survey data, intersection, resection or a combination of 

both, using the method of Variation of Coordinates, the cofactor matrix  contains 

estimates of the variances and covariances of the adjusted quantities.  These precision 

estimates, variances ,  and covariance  can be used to define a geometric figure 

known as the Standard Error Ellipse, which is a useful graphical representation of the 

precision of a position fix.  Poor or "weak" fixes are indicated by narrow elongated ellipses 

and good or "strong" position fixes are indicated by near circular ellipses. 

1
xx

−=Q N

2
Es 2

Ns ENs

 

Error ellipses may be computed for points before any observations are made provided the 

approximate locations of points (fixed and floating) are known.  Observations (directions, 

bearings and distances) may be scaled from maps and diagrams and an approximate set of 

normal equations formed.  The inverse of the coefficient matrix N yields all the information 

required for the computation of the parameters of the error ellipses.  In such cases, error 

ellipses are an important analysis tool for the surveyor in planning survey operations 

 

8.1. The Pedal Curve of the Standard Error Ellipse 

Consider a point whose precision estimates, variances ,  and covariance  are known.  

The variance in any other direction u may be calculated by considering the projection of E 

and N onto the u-axis, which is rotated anti-clockwise from the E-axis by an angle 

2
Es 2

Ns ENs

φ  

 

 N

E

u

φ

N sin  φ
E cos φ

 

 

 ( )
cos sin

,
u E N

f E N
φ φ= +

=
 (8.1) 

 

  

 Figure 8.1 
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Applying the law of propagation of variances to equation (8.1) gives an expression for 

variance in the u-direction 

 
2 2

2 2 2 2u E N EN
f f fs s s s
E N E
∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

f
N
∂
∂

 (8.2) 

The partial derivatives cos , sinf f
E N

φ φ∂ ∂
= =

∂ ∂
 are obtained from (8.1) to give an equation for 

the variance  in a direction 2
us φ  (positive anti-clockwise) from the E-axis. 

 2 2 2 2 2cos sin 2 cos sinu E N ENs s s sφ φ φ= + + φ  (8.3) 

Equation (8.3) defines the pedal curve of the Standard Error Ellipse 

 

•

•

tangent

no
rm

al

A

P

N

Pedal curve

major

axis

m
inor

axis

a

b

θ

Ellipse

O
φ

Scale  of  units

0 1 2

E

 
 

Figure 8.2.  The pedal curve of the Standard Error Ellipse 

 

In Figure 8.2, A is a point on an ellipse.  The tangent to the ellipse at A intersects a normal to 

the tangent passing through O at P.  As A moves around the ellipse, the locus of all points P is 
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the pedal curve of the ellipse.  The distance 2
uOP s=  for the angle φ .  The maximum and 

minimum values of  define the directions and lengths of the axes of the ellipse and the 

following section details the equations linking variances ,  and covariance  with the 

Standard Error Ellipse parameters 

2
us

2
Es 2

Ns ENs

, anda b θ . 

 

8.2. Parameters of the Standard Error Ellipse 

Equation (8.3) has maximum and minimum values defining the lengths and directions of the 

axes of the error ellipse.  To determine these values from (8.3) the trigonometric identities 
2 21 cos2 2sin , 1 cos2 2cos , sin 2 2sin cosφ φ φ φ φ φ− = + = = φ  can be used to give 

 
( ) ( )

( ) ( )

2 2 2

2 2 2 2

1 11 cos2 1 cos2 sin 2
2 2
1 1 cos2 sin 2
2 2

u E N EN

E N E N EN

s s s s

s s s s s

φ φ φ

φ φ

= + + − +

= + + − +
 

Letting ( )2 21
2 E NA s s= −  and ENB s=  this expression has the general form 

 ( )2 2 21 cos2 sin 2
2u E Ns s s A Bφ φ= + + +  (8.4) 

Equation (8.4) can be expressed as a trigonometric addition 

 

( ) ( )

( )

2 2 2

2 2

1 cos 2
2
1 cos2 cos sin 2 sin
2

u E N

E N

s s s R

s s R R

φ α

φ α φ

= + + −

= + + + α  (8.5) 

Equating the coefficients of cos2φ  and sin 2φ  in equations (8.4) and (8.5) gives cosR Aα =  

and sinR Bα =  from which we obtain 

 

( ) ( )

( ) ( )

2 2

2 22 21
4

2 22 21 4
2
1
2

E N EN

E N EN

R A B

s s s

s s s

W

= +

= − +

= − +

=  (8.6) 
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where ( ) ( )2 22 2 4E N ENW s s s= − +  (8.7) 

and the angle α  from 

 2 2

2tan EN

E N

B s
A s s

α = =
−

 (8.8) 

Inspection of equation (8.5) shows that ( ) (2 2 21 cos 2
2u E Ns s s R )φ α= + + −  will have a 

maximum value when ( )2 0φ α− =  i.e., ( )cos 0 1= and a minimum value when ( )2φ α π− =  

i.e.,  or ( )cos 1π = −

 
( ) ( ) ( )

( ) ( ) ( )

2 2 2 2 2

2 2 2 2 2

1 1max
2 2
1 1min
2 2

u E N E N

u E N E N

s s s R s s

s s s R s s

= + + = + +

= + − = + −

W

W
 (8.9) 

Inspection of Figure 8.2 shows that the maximum and minimum values of  are in the 

directions of the major and minor axes of the Standard Error Ellipse and the semi-axes lengths 

are 

2
us

 
( )

( )

2 2

2 2

1
2
1
2

E N

E N

a s s W

b s s W

= + +

= + −

 (8.10) 

The value of φ  when  is a maximum is when 2
us ( )2φ α 0− = , i.e., when 2α φ=  thus from 

equation (8.8), letting θ φ=  when  is a maximum, the angle 2
us θ , measured anti-clockwise 

from the E-axis to the major axis of the Standard Error Ellipse, is given by 

 2 2

2tan 2 EN

E N

s
s s

θ =
−

 (8.11) 

Note that  is a minimum when 22
us φ α π− = , i.e., when 2α φ π= −  thus from equation (8.8), 

letting θ φ=  and recognizing that ( )tan tanx xπ− = , then ( )2 2tan 2 2 EN E Ns s sθ = −  which is 

the same equation for the angle to the major axis.  Hence, it is not possible to distinguish 

between the angles to the major or minor axes and the ambiguity must be resolved by using 

equation (8.3). 
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Alternatively, the parameters of the Standard Error Ellipse can be determined from equation 

(8.3) by the methods outlined in Chapter 2 (Sction 2.7.2 Least Squares Best Fit Ellipse).  

Consider equation (8.3) expressed as 

 2 2 2 2cos sin 2 cos sinE N ENf s s sφ φ φ= + + φ  (8.12) 

and the aim is to find the maximum and minimum values of f (the maximum and minimum 

variances) and the values of φ  when these occur by investigating the first and second 

derivatives f ′  and f ′′  respectively, i.e., 

 
max 0 and 0

 is  when 
min 0 and 0

f f
f

f f
′ ′′= <⎧ ⎫ ⎧

⎨ ⎬ ⎨ ′ ′′= >⎩ ⎭ ⎩

⎫
⎬
⎭

2

 

where 
( )
( )

2 2

2 2

sin 2 2 cos2

2 cos2 4 sin

N E EN

N E EN

f s s s

f s s s

φ φ

φ φ

′ = − +

′′ = − −
 (8.13) 

Now the maximum or minimum value of f occurs when 0f ′ =  and from the first member of 

(8.13) the value of φ  is given by 

 2 2

2tan 2 EN

E N

s
s s

φ =
−

 (8.14) 

But this value of φ  could relate to either a maximum or a minimum value of f.  So from the 

second member of equations (8.13) with a value of 2φ  from equation (8.14) this ambiguity 

can be resolved by determining the sign of the second derivative f ′′  since it is known that 

 max

min

0
 when 

0
f f
f f

′′ <⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ′′ >⎩ ⎭⎩ ⎭

⎬

 

In the equation of the pedal curve of the Standard Error Ellipse given by equation (8.12) maxf  

coincides with  and 2
maxs minf  coincides with  so the angle 2

mins θ  (measured positive anti-

clockwise) from the E-axis to the major axis of the ellipse (see Figure 8.2) is found from 

 
2
max
2 1

2min

0
 when  and 

0
fs
fs

θ φ
θ φ π

′′ =<⎧ ⎫ ⎧ ⎫⎧ ⎫
⎨ ⎬ ⎨ ⎬ ⎨′′ = −>⎩ ⎭ ⎩ ⎭⎩ ⎭

⎬  

Substituting φ θ=  and 1
2φ θ= + π  into equation (8.3) will give the max. and min. values of 

the variance which are the lengths of the semi axes a and b of the Standard Error Ellipse. 
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8.3. Example Computation 

In Figure 8.2,  2 26.0, 2.0 and 1.2E N ENs s s= = =

 

The lengths of the semi-axes of the Standard Error Ellipse are 

 

( ) ( )

( )

2 22 2

22

4

4 4 1.2

4.6648

E N ENW s s s= − +

= +

=

 

 
( )

( )

2 2

2 2

1 2.5164
2
1 1.2914
2

E N

E N

a s s W

b s s W

= + + =

= + − =

 

The angle between the E-axis and the major axis (positive anti-clockwise), noting the 

quadrant signs to determine the proper quadrant of 2θ  

 

( )
2 2

2 1.22tan 2
6 2

2 30 57 50
15 28 55

EN

E N

s
s s

θ

θ

θ

+⎛ ⎞= = = ⎜ ⎟− − +⎝ ⎠
′ ′′=

′ ′′=

 

Substituting the values 15 28 55φ θ ′ ′′= =  and 90 105 28 55φ θ ′ ′′= + =  into equation (8.3) 

gives  and  respectively so 2.5164us = 1.2914us = 15 28 55θ ′ ′′=  is the angle (positive anti-

clockwise) between the E-axis and the major axis.  Hence the bearing of the major axis is 

 90 74 31 05θ ′ ′− = ′
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Alternatively, using the method of evaluating the second derivative we have from equation 

(8.14) 

 

( )
2 2

2 1.22tan 2
6 2

2 30 57 50
15 28 55

EN

E N

s
s s

φ

φ

φ

+⎛ ⎞= = = ⎜ ⎟− − +⎝ ⎠
′ ′′=

′ ′′=

 

The second derivative, from the second member of equations (8.13) is 

 

( )
( ) ( ) ( ) ( )

2 22 cos2 4 sin 2

2 2 6 cos 30 57 50 4 1.2 sin 30 57 50

9.3295

N E ENf s s sφ φ′′ = − −

′ ′′ ′ ′′= − −

= −

 

Now, since  then 0f ′′ < 15 28 55θ φ ′ ′′= =  is the angle (positive anti-clockwise) from the E-

axis to the major axis of the ellipse.  The bearing of the major axis is . 90 74 31 05θ ′ ′− = ′

′

 

The Standard Error Ellipse semi-axes lengths a and b are obtained from equation (8.3) with 

 and 15 28 55φ θ ′ ′= = 1
2 105 28 55φ θ π ′ ′′= + =  respectively giving 

15 28 55φ ′ ′= ′   and 2
max 6.3324s = 2

max 2.5164a s= =  

105 28 55φ ′ ′= ′   and 2
min 1.6677s = 2

min 1.2914b s= =  
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8.4. Some Examples of Resections and Error Ellipses 

 

 

 

A

B

C

D

 

 

 

 

 

 

A

B

C

D

 

 

 

 

 

 

 

 

 

 

 Figure 8.3.  Resection 1 Figure 8.4.  Resection 2 

 

In Resection 1 (Figure 8.3) the error ellipse indicates a strong position fix and the observed 

stations are spread through an arc of approximately 200°. 

 

In Resection 2 (Figure 8.4) the error ellipse indicates a poor position fix.  The observed 

stations lay in a small arc of approximately 35°. 
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8.5. Some Examples of Orientation and Shape of Ellipses 

 

θ

θ

N

E

N N

N

E E E

1 2 3 4
 

 

5 6 7 8

N

N
N

N

E E E Eθ
θ

θ
θ

 
 

Ellipse 2
Es  2

Ns  ENs  ENρ  a b θ  

1 4 4 2 0.5 2.45 1.41 45° 

2 4 4 -2 -0.5 2.45 1.41 -45° 

3 16 4 0 0 4 2 0° 

4 4 16 0 0 4 2 90° 

5 16 4 6 0.75 4.30 1.23 22° 30′ 

6 4 16 6 0.75 4.30 1.23 67° 30′ 

7 4 16 -6 -0.75 4.30 1.23 -67° 30′ 

8 16 4 -6 -0.75 4.3 1.23 -22° 30′ 

 

Note:  EN
EN

E N

s
s s

ρ =  is the correlation coefficient 1 1ENρ− ≤ ≤  

© 2005, R.E. Deakin Notes on Least Squares (2005) 8–9 



RMIT University Geospatial Science 
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© 2005, R.E. Deakin Notes on Least Squares (2005) 8–10 



RMIT University Geospatial Science 

 

9. LEAST SQUARES RESECTION 

A resection is a mathematical technique for determining the plane coordinates of an 

"unknown" point by observing theodolite (or Total Station) directions to three or more 

"known" points; known points being those whose coordinates are known.  Directions to three 

known points are the minimum requirement for a solution, which may be obtained from 

geometric principles.  There are many techniques for geometric solution, two of which have 

been studied in the practical projects associated with this course; (i) the Collins Point method 

and (ii) the method of Auxiliary angles. 

 

In the case of four or more observed directions to known points, the method of least squares 

(least squares adjustment of indirect observations) may be employed to obtain the best 

estimates of the coordinates of the resected point.  This technique requires the formation of a 

set of observation equations that yield "normal equations" that are solved for the best 

estimates of the coordinates of the resected point.  Owing to the nature of the observation 

equation, which is a linearized approximation, the least squares solution process is iterative.  

That is, approximate values are assumed, corrections computed and approx values updated; 

with the process repeated until the corrections to approximate vales become negligible.  This 

least squares technique is often called Variation of Coordinates. 

 

9.1. The Resection Observation Equation 

In the case of four or more observed directions to known points, the method of least squares 

may be employed to obtain the best estimates of the coordinates of the resected point.  This 

technique requires the formation of a set of observation equations; each equation based on a 

linearized form of the following equation whose elements are shown in Figure 9.1. (see 

Chapter 7, Section 7.3 for details regarding the linearization process using Taylor's theorem). 

 1tan k P
k k

k P

E Ev z
N N

α − ⎛ ⎞−
+ + = ⎜ −⎝ ⎠

⎟  (9.1) 

 

© 2005, R.E. Deakin Notes on Least Squares (2005) 9–1 



RMIT University Geospatial Science 

 

E

N

P3

Pi

P1
P2

Pk

(RO)

z

φik

ikα

α i2
αα

s
s

s

s

i1
i1

i2

i3

ik
αi3

i

EEEkkk - E- E- Eiii

N k
- N

i

E'

N'

 
 

Figure 9.1  Observed directions α  and distances s from  iP

 

where 

 kα  are the observed directions from the resection point P to the known points , kP

  are the residuals (small corrections) associated with observed directions, kv

 z is an orientation "constant"; the bearing of the Reference Object (RO) for the 

set of observed directions, 

 ,  are the east and north coordinates of the known points, and kE Nk

 ,P PE N  are the east and north coordinates of the resection point. 

 

Equation (9.1) is a non-linear equation, which has a linear approximation of the form 

 0
k k k P k Pv z z a N b E 0

kα φ+ + + Δ =− Δ − Δ +  (9.2) 

where  are direction coefficients (see Chapter 7, Section 7.3) ,k ka b

  

( )
( )

( )

0 0

2 00

0 0

2 00

sin

cos

k P k
k

kk

k P
k

kk

E E
a

ss

N Nb
ss

k

φ

φ

− − −
= =

−
= =

 (9.3) 
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, ,E N zΔ Δ Δ  are small corrections to approximate coordinates 0 , 0
P PE N  of the resected point 

and the approximate orientation constant  such that 0z

 

0

0

0

P P

P P

E E E

N N N

z z z

= + Δ

= + Δ

= + Δ

 (9.4) 

0 0,k ksφ  are approximate bearings and distances obtained by substituting the approximate 

coordinates 0 , 0
P PE N  into 

 
0

0 1
0tan k P

k
k P

E E
N N

φ − ⎛ ⎞−
= ⎜ −⎝ ⎠

⎟

)

 (9.5) 

 ( ) (20 0
k k P k Ps E E N N= − + −

20  (9.6) 

 

9.2. Formation of the Observation Equations into Standard Matrix Form 

The observation equation (9.2) can be re-arranged into a "standard" form 

 ( )0
k k k k kv a N b E z zφ α+ Δ + Δ + Δ = − + 0  (9.7) 

A set of n such equations can be represented in matrix form as 

 

( )
( )

( )

0 0
1 1

1 1 1
0 0

2 2 2 2 2

0 0

1
1

1n n n
n n

zv a b
N

v a b z
E
z

v a b z

φ α

φ α

φ α

⎡ ⎤− +⎡ ⎤ ⎡ ⎤ ⎢ ⎥Δ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +⎢ ⎥⎢ ⎥ ⎢ ⎥+ Δ = ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎣ ⎦ ⎣ ⎦ − +⎢ ⎥⎣ ⎦

 

or + =v Bx f  (9.8) 

where n is the number of observed directions (= to the number of equations) 

 u is the number of "unknowns" (in the case of a resection u = 3) 

 v is an (n,1) vector of residuals 

 B is an (n,u) coefficient matrix containing the direction coefficients and ones 

 x is a (u,1) vector of "unknowns" which are corrections to approximate 

coordinates and orientation constant 
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 f is an (n,1) vector of numeric terms which are "computed bearing − observed 

bearing" 

 

9.3. Formation of the Normal Equations and Solution of the Unknowns 

In any least squares adjustment, every measurement (or observation) has an associated 

precision (a variance) and a measure of connection with every other measurement 

(covariances).  These statistics are contained in a covariance matrix Σ .  The elements of a 

covariance matrix are population statistics and in practice, the covariance matrix is estimated 

a priori by a cofactor matrix Q.  Covariance matrices and cofactor matrices are related by 

 where σ 2
0QΣ = 2

0σ  is the variance factor.  An estimate of the variance factor 2
0σ̂  may be 

computed after the adjustment.  In least squares theory it is often useful to express the relative 

precision of observations in terms of weights, where a weight is defined as being inversely 

proportional to a variance, this leads to the definition of a weight matrix as the inverse of a 

cofactor matrix, i.e. .  Weight matrices, covariance matrices and cofactor matrices 

are square and symmetric (see Chapter 2, Section 2.5). 

1−=W Q

 

Applying the least squares principle to equation (9.8) with the precisions of the observations 

estimated by a weight matrix leads to a set of normal equations of the form 

 ( )T T=B WB x B Wf  

or =Nx t  (9.9) 

where W is an (n,n) weight matrix 

  is a (u,u) coefficient matrix of the set of normal equations T=N B WB

  is a (u,1) vector of numeric terms T=t B Wf

 

The solution of the n = 3 unknowns is 

 1

N
E
z

−

Δ⎡ ⎤
⎢ ⎥= Δ =⎢ ⎥
Δ⎢ ⎥⎣ ⎦

x N t  (9.10) 
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9.4. The form of the Coefficient Matrix N and the Vector of Numeric Terms t 

For n observations, the coefficient matrix B and the vector of numeric terms f have the 

following form 

 

( )
( )
( )

( )

0 0
1 1

1 1 1
0 0
2 22 2 2

0 0
3 3 3 3 3

0 0

1
1
1 ,

1n n n
n n

za b f
za b f

a b f z

a b f z

φ α

φ α

φ α

φ α

⎡ ⎤− +
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ − +⎢ ⎥⎣ ⎦

B f  

Each observed direction has an associated variance 2σ  estimated by  where 2s σ  is the 

standard deviation (a population statistic) and s is its estimate.  The observed directions are 

assumed independent, hence the covariances between observations are zero and the 

covariance matrix, cofactor matrix and weight matrix are all diagonal matrices.  The cofactor 

matrix Q and the weight matrix W have the following form 

 

2
1

2
2

2
3

2

2
11

2
22

1 2
33

2

0 0 0
0 0 0
0 0 0

0 0 0

0 0 01 0 0 0
0 00 1 0 0
0 0 00 0 1 0

0 0 00 0 0 1

n

nn

s
s

s

s

ws
ws

ws

ws

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

0
⎡ ⎤

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥= = = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

Q

W Q

 (9.11) 

The normal equation coefficient matrix N and vector of numeric terms t have the following 

form 

 

2

1 1 1 1

2

1 1 1 1

1 1 1 1

,

n n n n

k k k k k k k k k k
k k k k
n n n n

T T
k k k k k k k k k k

k k k k
n n n n

k k k k k k k
k k k k

w a w a b w a w a f

w a b w b w b w b f

w a w b w w f

= = = =

= = = =

= = = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= = = = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

N B WB t B Wf

⎦

 (9.12) 
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Note that if each element of the coefficient matrix B and vector of numeric terms f is divided 

by the appropriate estimate of the standard deviation augmented matrices B  and f  can be 

formed 

 

( )
( )
( )

( )

0 0
1 1 1

1 1 1 1 1 1 1
0 0
2 2 22 2 2 2 2 2 2

0 0
3 3 3 3 3 3 3 3 3 3

0 0

1
1
1 ,

1n n n n n n n
n n n

z sa s b s s f s
z sa s b s s f s

a s b s s f s z s

a s b s s f s z s

φ α

φ α

φ α

φ α

⎡ ⎤− +
⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− +
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ − +⎢ ⎥⎣ ⎦

B f  (9.13) 

and the normal equation coefficient matrix N and vector of numeric terms t are given by 

 
T T

T T

= =

= =

N B WB B B
t B Wf B f

 (9.14) 

 

9.5. The Iterative Solution and Assessment of Precision 

The elements of the solution vector [ ]TN E z= Δ Δ Δx  are corrections to the approximate 

coordinates 0 , 0
P PE N  and the approximate orientation constant .  These corrections are 

added to the approximate values to obtain updated values of the approximations and another 

iteration performed. 

0z

 

When the corrections for the kth iteration reach some desired value, say less than 0.5 mm, then 

the current "approximate" values may be regarded as exact and the solution is complete. 

 

At the end of the iterative process, the residuals v are computed from equation (9.8) and an 

assessment of the "quality" of the observations can be made.  Large residuals may indicate 

poor observations. 

 

An estimate of the variance factor 2
0σ̂  can be computed from the residuals after the 

adjustment process by using the following equation (see Chapter 5, equation (5.25)) 

 2
0ˆ

T T

n u n u
σ −

= =
− −

v Wv f Wf x tT

 (9.15) 
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Note that in (9.15) the variance factor can be computed without calculating the residuals. 

 

The following pages show an example resection.  Page 8 shows a diagram of the resection 

observations to four known stations.  Page 9 shows a geometric solution for the coordinates of 

P using the Collins Point technique and pages 10 to 14 show the calculations required for a 

least squares solution using all four observations. 
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9.6. Example Resection: Diagram and Observations 

 

GOVERNMENT HOUSE

STUDLEY PARK
ST JOHNS

EPIPHANY

P

N

 
 

 
STATION COORDINATES OBSERVED DIRECTION 

Government House 
(Flagpole) 

321862.876 E 
5811188.930 N 0° 00′ 00″ 

Saint. Johns 
(Spire) 

322731.700 E 
5815369.270 N 87° 09′ 09″ 

Epiphany 
(Flagpole) 

323590.140 E 
5816974.280 N 134° 40′ 36″ 

Studley Park 
(Beacon) 

325526.582 E 
5815551.657 N 201° 48′ 52″ 
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9.7. Example Resection: Collins Point Solution 

 

STUDLEY PARK

EPIPHANY

GOVERNMENT
HOUSE

α

β

δ

δ
γ

γ

55  19  03.26
O ′

″

6  31  10.38O ′ ″

15  17  41.62O ′ ″

56
97

.02
804

4

40
44

.11
95

48

1740.715666

10901.65621

14126.622 223

180     ° − (γ + δ)

COLLINS POINT
326831.627 E

321862.876 E

324095.159 E

325526.582 E

323590.140 E

5801485.445 N

5811188.930 N

5814561.142 N

5815551.657 N

5816974.280 N

P

21
3

 30
 11

.26

°
′

″

40  01  21.6
4

°
′

″

168
 10

 47.26
°

′
″

17 4
 41

 57.6 4
°

′
″

152  53  05.64

°
′

″
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9.8. Example Resection: Least Squares Solution 

The data for this resection is shown on the preceding pages.  The coordinates of P are 

computed from the Collins Point resection and are rounded to the nearest 0.1 metres. 

 

Observations and computed data 
 
 Coordinates Observed Directions Computed Bearing and Distance 
Station East North Deg Min Sec Deg Min Sec Dist (m) 
P 324095.200 5814561.100        
Gov't House 321862.876 5811188.930  0  00  00  213 30 14.18 4044.107 
St. Johns 322731.700 5815369.270  87  09  09  300 39 21.44 1585.015 
Epiphany 323590.140 5816974.280  134  40  36  348 10 44.62 2465.466 
Studley Park 325526.582 5815551.657  201  48  52  55 18 56.40 1740.706 
 
 
Computation of Direction coefficients and numeric terms for the observation equation 

 ( )0
k k k k kv a N b E z zφ α+ Δ + Δ + Δ = − + 0  (9.16) 

Note 1: In equation (9.16) the numeric terms on the right-hand-side are computed bearing - 

"observed" bearing.  The observed bearings are obtained by adding the observed 

directions to the computed bearing of the RO (Government House). 

Note 2: The dimensions (or units) of the numeric terms on the right-hand-side of (9.16) are 

seconds of arc.  This means that the elements on the left-hand-side must have 

consistent dimensions, i.e.  (seconds),  (seconds/length),  (length) 

and  (seconds).  If the corrections to approximate coordinates are expressed in 

centimetres (cm), then the direction coefficients have dimensions of sec/cm and 

equations 

kv ,k ka b ,E NΔ Δ

zΔ

(9.3) are 

  

( )
( )

( )

0 0

2 00

0 0

2 00

sin

cos

k P k
k

kk

k P k
k

kk

E E
a

ss

N Nb
ss

φρ ρ

φρ ρ

− − −′′ ′= × =

−

′×

′′ ′= × = ′×

 (9.17) 

 where distances and coordinate differences are in cm's and 180 3600ρ
π

′′ = ×  (seconds 

in one radian). 
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 Direction coefficients Computed Bearing Observed Bearing Numeric term 
Station a (sec/cm) b (sec/cm) Deg Min Sec Deg Min Sec comp-obs (sec) 
Gov't House 0.281538 -0.425294 213 30 14.18  213 30 14.18 0.00 
St. Johns 1.119473 0.663531 300 39 21.44  300 39 23.18 -1.74 
Epiphany 0.171384 0.818873 348 10 44.62  348 10 50.18 -5.56 
Studley Park -0.974383 0.674301 55 18 56.40  55 19 06.18 -9.78 
 
 

Coefficient matrix B, vector of numeric terms f and normal equation coefficient matrix 

 T=N B WB

 

 NΔ  EΔ  zΔ    

0.281538 -0.425294 1 0.00 

1.119473 0.663531 1 -1.74 

0.171384 0.818873 1 -5.56 
B = 

-0.974383 0.674301 1 

f = 

-9.78 

 

In this example, the observations are assumed to be of equal precision.  In such cases the 

weight matrix W can be replaced by the Identity matrix I, and the normal equation coefficient 

matrix  and the vector of numeric terms  T T= = =N B WB B IB B BT TT T= = =t B Wf B If B f

 

2.311280 0.106383 0.598012 6.630754 

0.106383 1.746384 1.731411 -12.302480 T=N B B  

0.598012 1.731411 4.000000 

  =  T=t B f

-17.081376 

 

 

Inverse of normal equation coefficient matrix 1−N  and solution vector  1−=x N t

 

0.454844 0.069562 -0.098111 3.8360 (cm) 

0.069562 1.013710 -0.449187 -4.3372 (cm) 1−N  = 

-0.098111 -0.449187 0.459100 

1−=x N t  =  

-2.9665 (sec)
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Corrections to approximate coordinates and correction to approximate orientation 

constant 

 

4.3372 cm 0.043 mEΔ = − = − ,  and 3.8360 cm 0.038 mNΔ = = 2.9665 sec 3.0 seczΔ = − = −  

 

 

Adjusted coordinates of P and residuals (after one iteration) 

 
0

0

324095.200 0.043 324095.157 m

5814561.100 0.038 5814561.138 m
P P

P P

E E E

N N N

= + Δ = − =

= + Δ = + =
 

 

Station Residual 

Government House 0.04 (sec) 

St. Johns -0.19 

Epiphany 0.30 

Studley Park -0.15 

 

 

Variance factor 2
0σ  and precision of computed coordinates 

 

An estimate of the variance factor 2
0σ̂  can be computed from equation (9.15) with W = I, 

n = 4, u = 3 and 

 2 2
0ˆ 129.620678 129.465415 0.155263 sec

1

T T T

n u
σ −

= = = − =
−

v v f f x t  

 

Assuming all the observations are of equal precision and letting W = I is equivalent to 

assigning an estimated standard deviation of 1 second to each observation.  Inspection of the 

variance factor shows that if a standard deviation of 0.39 sec ( 0.39 0.155263= ) was used as 

an estimate of the standard deviation of the observed directions, the estimate of the variance 

factor computed from the adjustment would have been approximately unity (a variance factor 

of unity indicates that the estimates of variances are close to the population statistics). 
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From this adjustment, we may conclude that the standard deviation of the observed directions 

was approximately 0.4 sec. 

 

A most important "by-product" of a least squares adjustment is the ability to estimate the 

precision of the computed quantities.  Theory shows that this information is contained in the 

inverse of the normal equations and the covariance matrix of the computed quantities xxΣ  is 

given by 

 

 

2 2 1
0 0

0.454844 0.069562 0.098111 0.070 0.011 0.015
0.155263 0.069562 1.013710 0.449187 0.011 0.157 0.070

0.098111 0.449187 0.459100 0.015 0.070 0.071
xx xxσ σ −

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢= = = − = −⎢ ⎥ ⎢
− − − −⎢ ⎥ ⎢⎣ ⎦ ⎣

Q NΣ
⎤
⎥
⎥
⎥⎦

and the standard deviation of the adjusted coordinates are 

 
0.157  cm 0.004 m

0.070 cm 0.003 m
E

N

σ

σ

= =

= =
 

 

 

Parameters of Standard Error Ellipse 

 

From the variance matrix xxΣ  above we have  2 20.157, 0.070 and 0.011E N ENσ σ σ= = =

 

Using the formulae from Chapter 8, Section 8.3 (replacing s with σ ), the lengths of the semi-

axes of the Standard Error Ellipse are 

 

( ) ( )

( ) ( )

2 22 2

2 2

4

0.157 0.070 4 0.011

0.0897

E N ENW σ σ σ= − +

= − +

=

 

 
( )

( )

2 2

2 2

1 0.3980 cm
2
1 0.2620 cm
2

E N

E N

a W

b s s W

σ σ= + + =

= + − =
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The angle between the E-axis and the major axis (positive anti-clockwise), noting the 

quadrant signs to determine the proper quadrant of 2θ  

 

( )
2 2

2 0.0112tan 2
0.157 0.070

2 14 11 28
7 05 44

EN

E N

σθ
σ σ

θ

θ

+⎛ ⎞= = = ⎜ ⎟− − +⎝ ⎠
′ ′′=

′ ′′=

 

Substituting the values 7 05 44φ θ ′ ′′= =  and 90 97 05 44φ θ ′ ′′= + =  into equation (8.3) 

gives  and  respectively so 0.3980 cmus = 0.2620 cmus = 7 05 44θ ′ ′′=  is the angle (positive 

anti-clockwise) between the E-axis and the major axis.  Hence the bearing of the major axis is 

 90 82 54 16θ ′ ′′− =

 

Figure 9.2 shows a schematic diagram of the example resection and the Standard Error Ellipse 

 

STUDLEY PARK

GOVERNMENT HOUSE

ST JOHNS

EPIPHANY

 
 

Figure 9.2  Schematic diagram of resection and Standard Error Ellipse 
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10. LEAST SQUARES BEARING INTERSECTION 

Intersection is a mathematical technique for determining the plane coordinates of an 

"unknown" point by observing bearings (clockwise angles from North) to the unknown point 

from two or more "known" points; known points being those whose coordinates E,N are 

known.  Figure 10.1 shows an unknown point P intersected by bearings , , ,A B C Dφ φ φ φ  

observed from known stations A, B, C and D.  Bearings from two known points are the 

minimum requirement for a solution, which may be obtained from geometric principles set 

out below.  In the case of three or more observed bearings from known points, the method of 

least squares may be employed to obtain the best estimates of the coordinates of the 

intersected point P.  This technique requires the formation of a set of observation equations 

that yield "normal equations" that are solved for the best estimates of the coordinates of P.  

Owing to the nature of the observation equation, which is a linearized approximation, the least 

squares solution process is iterative.  That is, approximate values are assumed, corrections 

computed and approx values updated; with the process repeated until the corrections to 

approximate vales become negligible. 

 

A
B

C

D

·P

N

E

φ
φ

φφ

A

B

CD

N

N

N

N

E

N

E

NP

P

A A−

−

 
 

Figure 10.1.  Unknown point P intersected by bearings from known points A,B,C and D 
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10.1. Position from Two Observed Bearings 

From Figure 10.1, using the bearings ,A Bφ φ  to the unknown point P from known points A and 

B with coordinates  and  the following two equations can be obtained ,AE N A B,BE N

 
tan

tan

P A
A

P A

P B
B

P B

E E
N N
E E
N N

φ

φ

−
=

−
−

=
−

 (10.1) 

Expanding these equations and re-arranging gives 

 
tan tan
tan tan

P P A A A A

P P B B B

E N N E
E N N EB

φ φ
φ φ

= −
= −

+
+

 (10.2) 

Equating equations (10.2) gives a solution for PN  

 tan tan
tan tan

A A B B B
P

A B

N N EN AEφ φ
φ φ

− + −
=

−
 (10.3) 

Having obtained a solution for PN  from (10.3) then PE  can be obtained from either of 

equations (10.2). 

 

It should be noted that if P lies on the line between A and B then its position is indeterminate. 

 

10.2. The Least Squares Bearing Intersection Observation Equation 

In the case of four or more observed directions to known points, the method of least squares 

may be employed to obtain the best estimates of the coordinates of the resected point.  This 

technique requires the formation of a set of observation equation; each equation based on a 

linearized form of the following equation whose elements are shown in Figure 10.1. 

 1tan P k
k k

P k

E Ev
N N

φ − ⎛ ⎞−
+ = ⎜ −⎝ ⎠

⎟  (10.4) 

where kφ  are the observed bearings known points  to the unknown point P, kP

  are the residuals (small corrections) associated with observed bearings, kv

 ,  are the east and north coordinates of the known points, and kE Nk
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 ,P PE N  are the east and north coordinates of the intersection point P. 

 

Equation (10.4) is a non-linear equation, which has a linear approximation of the form 

 0
k k k P k Pv a N b E kφ φ+ = Δ + Δ +  (10.5) 

where  are direction coefficients (see Chapter 7, Section 7.3) ,k ka b

  

( )
( )

( )

0 0

2 00

0 0

2 00

sin

cos

P k k
k

kk

P k k
k

kk

E E
a

ss

N Nb
ss

φ

φ

− − −
= =

−
= =

 (10.6) 

,E NΔ Δ  are small corrections to approximate coordinates 0 , 0
P PE N  of the intersected point 

such that 

 
0

0
P P

P P

E E E

N N N

= + Δ

= + Δ
 (10.7) 

0 ,k sφ 0
k

0

 are approximate bearings and distances obtained by substituting the approximate 

coordinates 0 ,P PE N  into 

 
0

0 1
0tan P k

k
P k

E E
N N

φ − ⎛ −
= ⎜ −⎝ ⎠

⎞
⎟

)

 (10.8) 

 ( ) (20 0 0
k P k P ks E E N N= − + −

2

k

 (10.9) 

 

10.3. Formation of the Observation Equations into Standard Matrix Form 

The observation equation (10.5) can be re-arranged into a "standard" form 

 0
k k k kv a N b E φ φ− Δ − Δ = −  (10.10) 

A set of n such equations can be represented in matrix form as 
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0
1 1 1 1 1

0
2 2 2 2 2

0
n n n n n

v a b
v a b N

E
v a b

φ φ
φ φ

φ φ

− − ⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − Δ −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ Δ⎣ ⎦
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

or + =v Bx f  (10.11) 

where n is the number of observed bearings (= to the number of equations) 

 u is the number of "unknowns" (in the case of an intersection u = 2) 

 v is an (n,1) vector of residuals 

 B is an (n,u) coefficient matrix containing the direction coefficients 

 x is a (u,1) vector of "unknowns" which are corrections to approximate 

coordinates 

 f is an (n,1) vector of numeric terms; "computed bearing − observed bearing" 

 

10.4. Formation of the Normal Equations and Solution of the Unknowns 

In any least squares adjustment, every measurement (or observation) has an associated 

precision (a variance) and a measure of connection with every other measurement 

(covariances).  These statistics are contained in a covariance matrix Σ .  The elements of a 

covariance matrix are population statistics and in practice, the covariance matrix is estimated 

a priori by a cofactor matrix Q.  Covariance matrices and cofactor matrices are related by 

 where σ 2
0QΣ = 2

0σ  is the variance factor.  An estimate of the variance factor 2
0σ̂  may be 

computed after the adjustment.  In least squares theory it is often useful to express the relative 

precision of observations in terms of weights, where a weight is defined as being inversely 

proportional to a variance, this leads to the definition of a weight matrix as the inverse of a 

cofactor matrix, i.e. .  Weight matrices, covariance matrices and cofactor matrices 

are square and symmetric (see Chapter 2, Section 2.5). 

1−=W Q

 

Applying the least squares principle to equation (10.8) with the precisions of the observations 

estimated by a weight matrix leads to a set of normal equations of the form 

 ( )T T=B WB x B Wf  

or =Nx t  (10.12) 
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where W is an (n,n) weight matrix 

  is a (u,u) coefficient matrix of the set of normal equations T=N B WB

  is a (u,1) vector of numeric terms T=t B Wf

 

The solution of the n = 2 unknowns is 

 1N
E

−Δ⎡ ⎤
= =⎢ ⎥Δ⎣ ⎦

x N t  (10.13) 

 

10.5. The form of the Coefficient Matrix N and the Vector of Numeric Terms t 

For n observations, the coefficient matrix B and the vector of numeric terms f have the 

following form 

 

0
1 1 1 1 1

0
2 2 2 2 2

0
3 3 3 3 3

0

,

n n n n n

a b f
a b f
a b f

a b f

φ φ
φ φ
φ φ

φ φ

− − ⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥= − − = =⎢ ⎥ ⎢ ⎥ −
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

B f  

Each observed bearing has an associated variance 2σ  estimated by  where 2s σ  is the 

standard deviation and s is its estimate.  The observed bearings are assumed independent, 

hence the covariances between observations are zero and the covariance matrix, cofactor 

matrix and weight matrix are all diagonal matrices.  The cofactor matrix Q and the weight 

matrix W have the following form 

 

2
1

2
2

2
3

2

0 0 0
0 0
0 0 0

0 0 0 n

s
s

s

s

0
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Q  

and 

2
11

2
22

1 2
33

2

0 0 01 0 0 0
0 00 1 0 0
0 0 00 0 1 0

0 0 00 0 0 1 nn

ws
ws

ws

ws

−

⎡ ⎤
0

⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥= = = ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

W Q  (10.14) 
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The normal equation coefficient matrix N and vector of numeric terms t have the following 

form 

  (10.15) 

2

1 1 1

2

1 1 1

,

n n n

k k k k k k k k
k k kT T
n n n

k k k k k k k k
k k k

w a w a b w a f

w a b w b w b f

= = =

= = =

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= = = =
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

∑ ∑ ∑

∑ ∑ ∑
N B WB t B Wf

⎤
⎥
⎥
⎥
⎥⎦

Note that if each element of the coefficient matrix B and vector of numeric terms f is divided 

by the appropriate estimate of the standard deviation augmented matrices B  and f  can be 

formed 

 

( )
( )
( )

( )

0
1 1 1

1 1 1 1 1 1
0
2 2 22 2 2 2 2 2

0
3 3 3 3 3 3 3 3 3

0

,

n n n n n n
n n n

sa s b s f s
sa s b s f s

a s b s f s s

a s b s f s s

φ φ

φ φ

φ φ

φ φ

⎡ ⎤−
− −⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= − − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − ⎢ ⎥⎣ ⎦ ⎣ ⎦ −⎢ ⎥⎣ ⎦

B f  (10.16) 

and the normal equation coefficient matrix N and vector of numeric terms t are given by 

 
T T

T

= =

= =

N B WB B B
t B Wf B fT

 (10.17) 

 

10.6. The Iterative Solution and Assessment of Precision 

The elements of the solution vector [ ]TN E= Δ Δx  are corrections to the approximate 

coordinates 0 , 0
P PE N .  These corrections are added to the approximate values to obtain 

updated values of the approximations and another iteration performed. 

 

When the corrections for kth iteration reach some desired value, say less than 0.5 mm, then the 

current "approximate" values may be regarded as exact and the solution is complete. 

 

At the end of the iterative process, residuals v are computed from equation (10.11) and an 

assessment of the "quality" of the observations can be made.  Large residuals may indicate 

poor observations. 
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The variance factor 2
0σ  can be computed from the residuals after the adjustment process by 

using the following 

 2
0

T T

n u n u
σ −

= =
− −

v Wv f Wf x tT

 (10.18) 

Note that in (10.18) the variance factor can be computed without calculating the residuals. 

 

10.7. Example Intersection:  Diagram and Observations 

 

A

B

C

D

P

N

E

φ

φ

φ

φ

A

B

C

D

N

N

N

N

 
 

 
STATION COORDINATES OBSERVED BEARING 

A 12875.270 E 
28679.600 N 34° 47′ 52″ 

B 12273.910 E 
29612.310 N 81° 01′ 23″ 

C 14117.390 E 
30999.980 N 200° 40′ 18″ 

D 14717.690 E 
30168.700 N 252° 09′ 35″ 
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10.8. Example Intersection:  Least Squares Solution 

The data for this intersection is shown on the previous page.  The coordinates of P are 

computed from equations (10.3) and (10.2) then rounded down to the nearest 0.1 metres. 

 

Observations and computed data 
 
 Coordinates Observed Bearing Computed Bearing and Distance 
Station East North Deg Min Sec Deg Min Sec Dist 
P 13677.500 29834.000        
A 12875.270 28679.600  34  47  52  34 47 48.08 1405.778 
B 12273.910 29612.310  81  01  23  81 01 28.43 1420.990 
C 14117.390 30999.980  200  40  18  200 40 12.06 1246.199 
D 14717.690 30168.700  252  09  35  252 09 48.52 1092.712 
 
 

Computation of Direction coefficients and numeric terms for the observation equation 

 0
k k k kv a N b E kφ φ− Δ − Δ = −  (10.19) 

Note 1 In equation (10.19) the numeric terms on the right-hand-side are computed bearing 

minus observed bearing. 

Note 2 The dimensions (or units) of the numeric terms on the right-hand-side of (10.19) are 

seconds of arc.  This means that the elements on the left-hand-side must have 

consistent dimensions, i.e.,  (seconds),  (seconds/length) and  

(length).  If the corrections to approximate coordinates are expressed in centimetres 

(cm), then the direction coefficients have dimensions of sec/cm and equations 

kv ,k ka b ,E NΔ Δ

(10.6) 

are 

  

( )
( )

( )

0 0

2 00

0 0

2 00

sin

cos

P k k
k

kk

P k k
k

kk

E E
a

ss

N Nb
ss

φρ ρ

φρ ρ

− − −′′ ′= × =

−

′×

′′ ′= × = × ′

  

 where distances and coordinate differences are in cm's and 180 3600ρ
π

′′ = ×  (seconds 

in one radian). 
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 Direction coefficients Computed Bearing Observed Bearing Numeric term 
Station a (sec/cm) b (sec/cm) Deg Min Sec Deg Min Sec comp-obs (sec) 
A 0.837318 -1.204891  34 47 48.08  34  47  52 -3.92 
B 1.433784 -0.226459  81 01 28.43  81  01  23 5.43 
C -0.584244 1.548607  200 40 12.06  200  40  18 -5.94 
D -1.796911 0.578189  252 09 48.52  252  09  35 13.52 
 
 
Coefficient matrix B, vector of numeric terms f, normal equation coefficient matrix 

 and numeric terms  T=N B WB T=t B Wf

 
 NΔ  EΔ    

0.837318 -1.204891 -3.92 
1.433784 -0.226459 5.43 

-0.584244 1.548607 -5.94 B =  

-1.796911 0.578189 

f = 

13.52 
 
In this example, the observations are assumed to be of equal precision.  In such cases the 

weight matrix W can be replaced by the Identity matrix I, and the normal equation coefficient 

matrix  and the vector of numeric terms  T T= = =N B WB B IB B BT TT T= = =t B Wf B If B f

 
6.327065 -3.277288 -16.323890 T=N B B  -3.277288 4.235533   =  T=t B f 2.114714 

 
 

Inverse of normal equation coefficient matrix 1−N  and solution vector  1−=x N t

 
0.263767 0.204092 -3.8741 (cm) 1−N  = 0.204092 0.394016 

1−=x N t  =  -2.4983 (cm) 
 
 

Corrections to approximate coordinates 

 

2.4983 cm 0.025 mEΔ = − = − ,  3.8741 cm 0.039 mNΔ = − = −
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Adjusted coordinates of P and residuals (after one iteration) 

 
0

0

13677.500 0.025 13677.475 m

29834.000 0.039 29833.961 m
P P

P P

E E E

N N N

= + Δ = − =

= + Δ = − =
 

 
Station Residual 
A -3.68 (sec) 
B 10.42 
C -4.33 
D 8.01 
 
 

Variance factor 2
0σ  and precision of computed coordinates 

 

An estimate of the variance factor 2
0σ̂  can be computed from equation (10.18) with W = I, 

n = 4, u = 2 and 

 2 2
0

262.925300 57.957192ˆ 102.484054 sec
4 2 2

T T T

n u
σ − −

= = = =
− −

v v f f x t  

 

Assuming all the observations are of equal precision and letting W = I is equivalent to 

assigning an estimated standard deviation of 1 second to each observation.  Inspection of the 

variance factor shows that if a standard deviation of 10.12 sec (10.12 102.484054= ) was 

used as an estimate of the standard deviation of the observed directions, the estimate of the 

variance factor computed from the adjustment would have been approximately unity (a 

variance factor of unity indicates that the estimates of variances are close to the population 

statistics). 

 

From this adjustment, we may conclude that the standard deviation of the observed directions 

was approximately 10.1 sec. 

 

A most important "by-product" of a least squares adjustment is the ability to estimate the 

precision of the computed quantities.  Theory shows that this information is contained in the 

inverse of the normal equations and the covariance matrix of the computed quantities xxΣ  is 

given by 
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 2 2 1
0 0

0.263767 0.204092 27.0319 20.9162
102.484054

0.204092 0.394016 20.9162 40.3804xx xxσ σ − ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
Q NΣ  

and the standard deviation of the adjusted coordinates are 

 
40.3804  cm 0.064 m

27.0319  cm 0.052 m
E

N

σ

σ

= =

= =
 

 

 

Parameters of Standard Error Ellipse 

 

From the variance matrix xxΣ  above we have 

 2 240.3804, 27.0319 and 20.9162E N ENσ σ σ= = =

 

Using the formulae from Chapter 8, Section 8.3 (replacing s with σ ), the lengths of the semi-

axes of the Standard Error Ellipse are 

 

( ) ( )

( ) ( )

2 22 2

2 2

4

40.3804 27.0319 4 20.9162

43.9105

E N ENW σ σ σ= − +

= − +

=

 

 
( )

( )

2 2

2 2

1 7.4607 cm
2
1 3.4280 cm
2

E N

E N

a W

b W

σ σ

σ σ

= + + =

= + − =

 

The angle between the E-axis and the major axis (positive anti-clockwise), noting the 

quadrant signs to determine the proper quadrant of 2θ  

 

( )
2 2

2 20.91622tan 2
40.3804 27.0319

2 72 18 09
36 09 04

EN

E N

σθ
σ σ

θ

θ

+⎛ ⎞= = = ⎜ ⎟− − +⎝ ⎠
′ ′′=

′ ′′=

 

Substituting the values 36 09 04φ θ ′ ′′= =  and 90 126 09 04φ θ ′ ′′= + =  into equation (8.3) 

gives  and  respectively so 7.4607 cmus = 3.4280 cmus = 36 09 04θ ′ ′′=  is the angle 
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(positive anti-clockwise) between the E-axis and the major axis.  Hence the bearing of the 

major axis is 90  53 50 56θ ′ ′− = ′

 

Figure 10.2 shows a schematic diagram of the example intersection and the Standard Error 

Ellipse 

 

A

B

C

D

 
 

Figure 10.2  Schematic diagram of intersection and Standard Error Ellipse 
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APPENDIX A  MATRIX ALGEBRA 

 

A 1 INTRODUCTION 

 

Matrix algebra is a powerful mathematical tool, which is extremely useful in modern 

computational techniques applicable to spatial information science.  It is neither new nor 

difficult, but prior to the development of the electronic computer was thought to be too 

cumbersome for practical applications.  In today's computer age large masses of data are 

accumulated and matrix algebra is a convenient and concise way of expressing algorithms and 

computer routines for the manipulation of data. 

 

The advantages of matrix algebra may be set out as: 

1. It provides a systematic means of storing and manipulating large arrays of data.  Such 

data may range from numerical coefficients of equations to characters and symbols 

related to scanned digital images. 

2. It provides a means of reducing large and complicated systems of equations to simple 

expressions, which can be easily visualised and analysed. 

3. It provides a concise method of expressing algorithms and of directing computer 

execution of those algorithms via computer programs. 

 

A 2 DEFINITIONS 

A 2.1 Matrix 

A matrix is a set of numbers or symbols arranged in a square or rectangular array of m rows 

and n columns as 

  Am n

n

n

n

m m m mn

a a a a
a a a a
a a a a

a a a a

, =

L

N

MMMMMM

O

Q

PPPPPP

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

"
"
"

# #
"
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A letter or symbol refers to the whole matrix.  In many texts and references, matrices are 

denoted by boldface type, ie, 

 A   X   P   Q   W 

Matrices may also be indicated by pacing a tilde (~) under a symbol, ie, 

  
A X P Q W~ ~ ~ ~ ~

Example A 1  

 A C x=
−

−

L

N
MMM

O

Q
PPP

=
−

L

N
MMM

O

Q
PPP

= − −
2 2 6
5 1 9
2 2 8

2 5
3 5
4 1

14 22 3 8  

A, C and x are all matrices.  Note that the matrix x is a row matrix or row vector.  Row 

matrices or row vectors are usually denoted by lowercase letters. 

A 2.2 Matrix element 

Individual elements of a matrix are shown by lowercase letters a  where the subscripts i and j 

indicate the element lies at the intersection of the i  row and the  column.  The first 

subscript always refers to the row number and the second to the column number. 

i j

th j th

 
column

row

j

a a a a a
a a a a a

a a a a a

a a a a a

im n

j n

j n

i i i i j i n

m m m m j mn

B

=

L

N

MMMMMMMM

O

Q

PPPPPPPP

←
A ,

11 12 13 1 1

21 22 23 2 2

1 2 3

1 2 3

" "
" "

# #
" "

# #
" "

c h

 

Another way of representing a matrix is by typical element, for example 

  A =
=
=

a
i n
j mi jn s 1 2

1 2
, , ,
, , ,
…
…

© 2005, R.E. Deakin Notes on Least Squares (2005) A2 



RMIT University Geospatial Science 

 

A 2.3 Matrix order 

A matrix is said to be of order m by n (or m, n) where m is the number of rows and n is the 

number of columns.  The order of a matrix may be expressed in various ways ie, 

  A A A A Am n m n m n m n m n, ,a f a f× ×

Example A 2  

 A C x3,3 3,2 1 4

2 2 6
5 1 9
2 2 8

2 5
3 5
4 1

14 22 3 8=
−

−

L

N
MMM

O

Q
PPP

=
−

L

N
MMM

O

Q
PPP

= − −,  

Matrix A is of order (3,3), matrix C is (3,2) and x is (1,4).  If a matrix is of order (1,1), it is 

called a scalar. 

 

A 3 TYPES OF MATRICES 

A 3.1 Square Matrix 

A square matrix is a matrix with an equal number of rows and columns.  A square matrix 

would be indicated by A  and said to be of order m.  Square matrices have a principal or 

leading diagonal whose elements are a  for i

m m,

ij j= .  In matrix A below, order (5,5), elements a, 

g, m, s and y lie on the leading diagonal. 

 A5 5, =

L

N

MMMMMM

O

Q

PPPPPP

a b c d e
f g h i j
k l m n o
p q r s t
u v w x y

 

Special cases of square matrices are symmetric and skew-symmetric which are described 

below. 
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A 3.2 Column Matrix or Column Vector 

A column matrix or column vector is a matrix composed of only one column.  Column 

vectors are usually designated by lowercase letters, for example 

  bm

m

b
b
b

b

,1

1

2

3=

L

N

MMMMMM

O

Q

PPPPPP
#

A 3.3 Row Matrix or Row Vector 

A row matrix or row vector is a matrix composed of only one row.  Row vectors are usually 

designated by lowercase letters, for example 

 b1 1 2 3,n nb b b b= "  

A 3.4 Diagonal Matrix 

A diagonal matrix is a square matrix with all "off-diagonal" elements equal to zero 

  Dm m

mm

ij

d
d

d

d

d i, =

L

N

MMMMMM

O

Q

PPPPPP

= ≠

11

22

33

0 0 0
0 0 0
0 0 0

0 0 0

0

"
"
"

# % #
"

where for j

A diagonal matrix may have some diagonal elements equal to zero.  A diagonal matrix is 

often shown in the form 

  D = diag d d d dm1 2 3, , , ,"l q

A 3.5 Scalar Matrix 

A scalar matrix is a diagonal matrix whose elements are all equal to the same scalar quantity 

  A =

L

N

MMMMMM

O

Q

PPPPPP

= ≠
= =

a
a

a

a

a i
a a i

ij

i j

0 0 0
0 0 0
0 0 0

0 0 0

0

"
"
"

# % #
"

where for
for

j
j
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Example A 3  

  is a (3,3) scalar matrix W =
L

N
MMM

O

Q
PPP

2 0 0
0 2 0
0 0 2

A 3.6 Identity or Unit Matrix 

An identity or unit matrix is a diagonal matrix whose elements are all equal to 1 (unity).  It is 

always referred to as I where 

  I =

L

N

MMMMMM

O

Q

PPPPPP

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1

"
"
"

# %
"

#

Note that all the "off-diagonal" elements are zero and all the elements of the leading diagonal 

are unity. 

A 3.7 Null or Zero Matrix 

A null or zero matrix is a matrix whose elements are all zero.  It is denoted by boldface 0. 

A 3.8 Triangular Matrix 

A triangular matrix is a square matrix whose elements above, or below, but not including the 

leading diagonal, are all zero.  Square matrices whose elements above the leading diagonal 

are zero are known as lower triangular matrices. 

 Lm m

m m m mm

ij

l
l l
l l l

l l l l

l i, =

L

N

MMMMMM

O

Q

PPPPPP

= <

11

21 22

31 32 33

1 2 3

0 0 0
0 0

0 0

"
"
"

# % #
"

where for j  

Square matrices whose elements below the leading diagonal are zero are known as upper 

triangular matrices. 

  Um m

m

m

m

mm

ij

u u u u
u u u

u u

u

u i, =

L

N

MMMMMM

O

Q

PPPPPP

= >

11 12 13 1

22 23 2

33 3

0
0 0

0 0 0

0

"
"
"

# % #
"

where for j
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Example A 4  

  G H=

−
−

L

N

MMMMMM

O

Q

PPPPPP

=
−

L

N
MMM

O

Q
PPP

2 1 2 4 3
0 5 4 3 2
0 0 3 2 1
0 0 0 5 6
0 0 0 0 2

8 0 0
3 4 0
5 2 6

G and H are both triangular matrices.  G is an upper triangular matrix and H is a lower 

triangular matrix.  Triangular matrices of order n have n n2 2+c h  non-zero elements. 

A 3.9 Unit Lower Triangular Matrix 

This is a special case of a lower triangular matrix, in which all the elements of the leading 

diagonal are equal to unity. 

  Lm m

m m m

ij

ij

l
l l

l l l

l i
l i, =

L

N

MMMMMM

O

Q

PPPPPP

= <
= =

1 0 0 0
1 0 0

1 0

1

0
1

21

31 32

1 2 3

"
"
"

# % #
"

where
for
for

j
j

j

A 3.10 Unit Upper Triangular Matrix 

This is a special case of an upper triangular matrix, in which all the elements of the leading 

diagonal are equal to unity. 

  Um m

m

m

m
ij

ij

u u u
u u

u
u i
u i j, =

L

N

MMMMMM

O

Q

PPPPPP

= >
= =

1
0 1
0 0 1

0 0 0 1

0
1

12 13 1

23 2

3

"
"
"

# % #
"

where
for
for

A 3.11 Banded Matrix 

A banded matrix is any square matrix in which the only non-zero elements occur in a band 

about the leading diagonal.  Thus, if A is to be a banded matrix 

 a iij = −0 when j k>  

A typical banded matrix of order 4 is 
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 A =

L

N

MMMM

O

Q

PPPP
= −

a a
a a a

a a a
a a

a iij

11 12

21 22 23

32 33 34

43 44

0 0
0

0
0 0

0 1where for >j  

 

A 4 MATRIX OPERATIONS 

A 4.1 Equality 

Two matrices A and B are equal if and only if they are the same order and a  for all i 

and j.  Matrices of different order cannot be equated. 

bij ij=

A 4.2 Addition 

The sum of two matrices A and B, of the same order, is a matrix C of that order whose 

elements are c a  for all i and j.  Matrices of different order cannot be added.  The 

following laws of addition hold true for matrix algebra: 

bij ij ij= +

 commutative law A B B A+ = +  

 associative law A B C A B C A B C+ + = + + = + +( ) ( )  

Example A 5  

 A B A B3,3 3,3

8 3 1
3 4 2
5 2 6

2 2 5
5 4 3
6 7 12

10 5 6
8 8 5

11 9 18
=

−

−

L

N
MMM

O

Q
PPP

=
−

−

L

N
MMM

O

Q
PPP

+ =
−

−

L

N
MMM

O

Q
PPP
 

A 4.3 Scalar Multiplication 

Multiplication of a matrix A by a scalar k is another matrix B of the same order whose 

elements are b  for all i and j. k aij ij=

Example A 6  

 A B A=
−

−

L

N
MMM

O

Q
PPP

= =
−

−

L

N
MMM

O

Q
PPP

8 3 1
3 4 2
5 2 6

4 0 1 5 0 5
1 5 2 0 1 0
2 5 1 0 3 0

1
2

. . .
. . .
. . .

 

The following laws relating to scalar multiplication hold true 
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k k k
k q k q

k k
k q kq

( )
( )

( ) ( ) (
( ) ( )

A B A B
A A A

AB A B A B
A A

+ = +
+ = +

= =
=

k )

A 4.4 Scalar Product 

In vector algebra, it is customary to denote the scalar product of two vectors 

a i j k= + +a a a1 2 3   and  b i j k= + +b b b1 2 3 ,  i, j and k being unit vectors in the direction of the 

x, y and z axes respectively, as 

 a a a
b
b
b

a b a b a b1 2 3

1

2

3

1 1 2 2 3 3

L

N
MMM

O

Q
PPP
= + +  

In matrix algebra, a set of three simultaneous equations represented as 

 Ax b=
L

N
MMM

O

Q
PPP

L

N
MMM

O

Q
PPP
=
L

N
MMM

O

Q
PPP

or
a a a
a a a
a a a

x
x
x

b
b
b

11 12 13

21 22 23

31 32 33

1

2

3

1

2

3

 

means that each element of the column vector b is the scalar product of each row of A by the 

column vector x, i.e., 

 
a x a x a x b
a x a x a x b
a x a x a x b

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

+ + =

+ + =

+ + =

 

A 4.5 Matrix Multiplication 

For three matrices A, B and C with their respective elements a b , then cij ij i j, and

  implies A B C= c aij ik k jb
k

= ∑  

which states that the element in row i and column j of C is equal to the scalar product of row i 

of A and column j of B 

 

It is important to note that for matrix multiplication to be defined the number of columns of 

the first matrix must be equal to the number of rows of the second matrix. 
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As a quick method of assessing whether a matrix multiplication is defined, write down the 

matrices to be multiplied with their associated rows and columns, ie, 

  and check that the "inner numbers" are the same. A B4 2 2 6, ,
A A

If they are the same, then the multiplication is defined and the product matrix has an order 

equal to the "outer numbers". 

  A B C4 2 2 6 4 6
A A

=, , ,

)
)
)

Remember, that in all cases, the first number of the matrix order refers to the number of rows 

and the second number refers to the number of columns. 

Example A 7  

  A B3,2 2 4

1 2
3 0
6 4

5 1 1 3
2 3 1 2

=
L

N
MMM

O

Q
PPP

=
L
NM

O
QPand ,

  

C A B3,4 3,2 2 4

1 2
3 9
6 4

5 7 1 3
2 3 8 2

1 5 2 2 1 7 2 3 1 1 2 8 1 3 2 2
3 5 9 2 3 7 9 3 3 1 9 8 3 3 9 2
6 5 4 2 6 7 4 3 6 1 4 8 6 3 4 2

9 13 17 7
33 48 75 27
38 54 38 26

=

=
L

N
MMM

O

Q
PPP
L
NM

O
QP

=
× + × × + × × + × × + ×
× + × × + × × + × × + ×
× + × × + × × + × × + ×

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

,

( ) ( ) ( ) (
( ) ( ) ( ) (
( ) ( ) ( ) (

Q
PPP

In forming the product AB we say that B has been pre-multiplied by A, or that A has been 

post-multiplied by B. 

The following relationships regarding matrix multiplication hold: 

  with I = the Identity matrix AI IA A= =

  (associative law) A BC AB C ABC( ) ( )= =

 A B C AB AC( )+ = +  (distributive law) 

 ( )A B C AC BC+ = +  (distributive law) 
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In these relationships above, the sequence of the matrices is strictly preserved.  Note that in 

general, the commutative law of algebra does not hold for matrix multiplication even if 

multiplication is defined in both orders, ie, 

  AB BA≠ in general

Example A 8  

A is of order (2,3), B is of order (3,2), AB is of order (2,2) and BA is of order (3,3).  Even if 

both matrices are square and of the same order, the results will in general not be the same 

when the order of multiplication is reversed. 

 

 

A B

AB BA

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

4 6 2
3 1 8
5 9 7

2 7 3
1 9 5
6 8 4

26 98 50
55 94 46
61 172 88

44 46 81
56 60 109
68 80 104

and

and

 

 

If the product of two matrices A and B is equal to the null matrix 0 then it does not follow that 

either A or B is zero 

Example A 9  

 A B AB=
−L

N
MMM

O

Q
PPP

=
−
−

−

L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

5 4 3
3 6 8
5 2 4

2 6
7 21
6 18

0 0
0 0
0 0

; ;  

This differs from ordinary algebra where if, for example, a × b = 0 then either a or b or both a 

and b are zero. 

 

Some particular results involving diagonal matrices are useful.  If A is a square matrix and D 

is a diagonal matrix of the same order, then 

 1. AD causes each column A  of A to be multiplied by the corresponding element 

 of D. 

j

d j j

 2. DA causes each row A i  of A to be multiplied by the corresponding element d  of 

D. 

ii
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Example A 10  

  and A =
L

N
MMM

O

Q
PPP

a a a
a a a
a a a

11 12 13

21 22 33

31 32 33

D =
L

N
MMM

O

Q
PPP

α
β

γ

0 0
0 0
0 0

 

 AD =
L

N
MMM

O

Q
PPP

α β γ
α β γ
α β γ

a a a
a a a
a a a

11 12 13

21 22 33

31 32 33

 and DA =
L

N
MMM

O

Q
PPP

α α α
β β β
γ γ γ

a a a
a a a
a a a

11 12 13

21 22 33

31 32 33

 

If a diagonal matrix D  has non-negative elements d  then for p > 0 n n, ii ≥ 0

  Dn n
p

p

p

nn
p

d
d

d

, =

L

N

MMMM

O

Q

PPPP

11

22

0 0
0 0

0 0

"
"

# %
"

#

and for p > 0 and q > 0 

 D D Dp q p q= +  and in particular D D D
1
2

1
2 =  

A 4.6 Matrix Transpose 

The transpose of a matrix A of order (m,k) is a (k,m) matrix formed from A by interchanging 

rows and columns such that row i of A becomes column i of the transposed matrix.  The 

transpose of A is denoted by A .  There are various other notations used to indicate the 

transpose of a matrix, such as: 

T

A A A At , , *′ and . 

 

If B A  = =T
ij jib a ithen for all and j

Example A 11  

  A = −
L

N
MMM

O

Q
PPP

3 2 3
1 2 3
4 0 6

AT = −
L

N
MMM

O

Q
PPP

3 1 4
2 2 0
3 3 6

 

  B = −
L

N
MMM

O

Q
PPP

4 5
1 2
7 0

BT =
−

L
NM

O
QP

4 1 7
5 2 0

 

© 2005, R.E. Deakin Notes on Least Squares (2005) A11 



RMIT University Geospatial Science 

The following relationships hold true 

  A B A B+ = +a fT T T

 ( )ABC C B A… …T T T T=  

  ( )k kT TA A=

  A AT Tc h =
 

If D is a diagonal matrix, then D DT =  

If H is a scalar matrix, then H H= T  

If I is the Identity matrix, then I I= T  

If x is a column vector, then x  is a non-negative scalar that is equal to the sum of 

the squares of the vector components. 

xT

If x is a row vector, then xx  is a symmetric matrix (square) of the same order as 

the vector x. 

T

A 4.7 Bilinear and Quadratic forms 

If x is an (m,1) vector of variables, y an (n,1) vector of variables and A an (m,n) matrix of 

constants, the scalar function 

  u T= x Ay

is known as a bilinear form. 

 

If x is an (m,1) vector of variables and B an (m,m) square matrix of constants, the scalar 

function 

  q T= x Bx

is known as a quadratic form.  An example of a quadratic form is the sum of the squares of 

the weighted residuals; the function  ,  which is minimised in least squares. Tϕ = v Wv

A 4.8 Matrix Inverse 

Division is not defined in matrix algebra.  In place of division, the inverse A  of a −1 square 

matrix A is introduced.  This inverse, if it exists, has the property 

 AA A A I− −= =1 1  

This relationship defines the Cayley Inverse for square matrices only.  A square matrix whose 

determinant is zero is singular and a singular matrix does not have an inverse.  A square 
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matrix whose determinant is non-zero is non-singular and does have an inverse.  Furthermore, 

if the inverse exists it is unique.  Rectangular matrices have no determinants and so they are 

taken to be singular but they may have an inverse (such as Moore-Penrose inverses), defined 

using Generalised Matrix Algebra.  These "generalised inverses" are not used in these notes. 

 

Consider the matrix equation Ax .  If A and b are known, then x may be determined from 

.  x is found in a sense, by "dividing" b by A, but in actual fact x is determined by 

pre-multiplying both sides of the original equation by the inverse A

b=

x A b= −1

−1.  For example 

  Ax b=

 A Ax A b− −=1 1  (pre-multiply both sides by A−1) 

giving 

  (since A A Ix A b= −1 − =1   and Ix x= ) 

 

The following rules regarding matrix inverses hold: 

 

( )

( )

( ) ( )

( ) (

ABC C B A

A A

A A

A A

… …− − − −

− −

− −

− −

=

=

=

=

1 1 1 1

1 1

1 1

1 11

T T

α
α

α is a scalar)

 

Matrix inversion plays an important part in least squares, primarily in the solution of systems 

of linear equations.  If the order of A is small, say (2,2) or (3,3), then manual calculation of 

the inverse is relatively simple.  But as the order of A increases, computer programs or 

software products such as Microsoft's Excel or The MathWorks MATLAB are the appropriate 

tools to calculate inverses and solve systems of equations. 

 

For a (2,2) matrix the inverse is simple and may be computed from the following relationship 

If    then   11 12

21 22

A A
A A
⎡

= ⎢
⎣ ⎦

A ⎤
⎥

22 121

21 1111 22 12 21

1
( )

A A
A AA A A A

− −⎡ ⎤
= ⎢ ⎥−− ⎣ ⎦

A  
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A 4.9 Matrix Differentiation 

1. If every element of a matrix A of order (m,n) is a differentiable function of a (scalar) 

variable u, then the derivative d dA u  is an (m,n) matrix of derivatives 

 d
du

da
du

da
du

da
du

da
du

da
du

da
du

da
du

da
du

da
du

m n

n

n

m m m

A
,
=

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

11 12 1

21 22 2

1 2

"

"

# %

"
n

#
 

Example A 12  

 

A A

x x

=
L
NM

O
QP

=
L
NM

O
QP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

3 2
4

6 6
2 16

2

3

4
3

12

2 3

2 4

2

3

2

3

4

2

3

u u
u u

d
du

u u
u u

u
u
u

d
du

u
u
u

then

then

 

2. For the matrix product C  where the elements of the matrices A and B are 

differentiable functions of the (scalar) variable u then 

AB=

d dC u  is given by 

 d
du

d
du

d
du

d
du

C AB A B A B
= = +( )  

Note that the sequence adopted in the product terms must be followed exactly, since for 

example, the derivative of AB is in general not the same as the derivative of BA. 

 

3. If a vector ym,1represents m functions of the n elements of a variable vector x  then the 

total differential d

n,1

y  is given by 

 d dy y
x

x=
∂
∂

 

 where the (m,1) and (n,1) vectors dy  and d  contain differentials x

 d

dy
dy

dy

d

dx
dx

dx

m

m

n

n

y x, ,1

1

2
1

1

2=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP# #
and  
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 and the partial derivative ∂ ∂y x  is an (m,n) matrix known as the Jacobian Matrix 

 ∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

L

N

MMMMMMMMMMM

O

Q

PPPPPPPPPPP

y
x

y
x

y
x

y
x

y
x

y
x

y
x

y
x

y
x

y
x

n

n

m m m

n

1

1

1

2

1

2

1

2

2

2

1 2

"

"

# %

"

#

 

4. The derivative of the inverse A−1 is obtained from 

 

AA I

AA I 0

A A A A 0

−

−

−
−

=

= =

+ =

1

1

1
1

d
dx

d
dx

d
dx

d
dx

c h  

hence 

 d
dx

d
dx

A A A A
−

− −=
1

1 1 

A 4.10 Differentiation of Bilinear and Quadratic forms 

For the bilinear form u T= x Ay where A is independent of both x and y  

 ∂
∂

=
∂
∂

=
u uT T T

x
y A

y
x Aand  

For the quadratic form q  where B is independent of x T= x Bx

 ∂
∂

=
q T

x
x A2  

These differentials are given without proof, but can be verified in the following manner 

 let andx y A3,1

1

2

3

2 1
1

2
3,2

11 12

21 22

31 32

=
L

N
MMM

O

Q
PPP

=
L
NM
O
QP =

L

N
MMM

O

Q
PPP

x
x
x

y
y

a a
a a
a a

, ,,  
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then 

 

u x x x
a a
a a
a a

y
y

x a x a x a x a x a x a
y
y

y x a y x a y x a y x a y x a y x a

T= x Ay =
L

N
MMM

O

Q
PPP
L
NM
O
QP

= + + + +
L
NM
O
QP

= + + + + +

1 2 3

11 12

21 22

31 32

1

2

1 11 2 21 3 31 1 12 2 22 3 32
1

2

1 1 11 1 2 21 1 3 31 2 1 12 2 2 22 2 3 32

 

and 

 

∂
∂

= + + +

=

=

u y a y a y a y a y a y a

T

T T

x
Ay

y A

1 11 2 12 1 21 2 22 1 31 2 32

a f  

and 

 
∂
∂

= + + + +

=

u x a x a x a x a x a x a

T

y

x A

1 11 2 21 3 31 1 12 2 22 3 32  

Using similar methods, the partial differential for the quadratic form q can also be verified.  

More explicit proofs can be found in Mikhail (1976, pp.457-460) and Mikhail & Gracie 

(1981, pp.322-324). 

 

A 4.11 Matrix Partitioning 

A subset of elements from a given matrix A is called a sub-matrix and matrix partitioning 

allows the matrix to be written in terms of sub-matrices rather than individual elements.  

Thus, the matrix A can be partitioned into sub-matrices as follows 

 Am n

n

n

n

n

m m m m mn

a a a a a
a a a a a
a a a a a
a a a a a

a a a a a

, =

L

N

MMMMMMM

O

Q

PPPPPPP

11 12 13 14 1

21 22 23 24 2

31 32 33 34 3

41 42 43 44 4

1 2 3 4

"
"
"
"

# #
"
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Considering the vertical dotted line only, A could be written as 

 A A A= 1 2  

where A  is an (m,3) sub-matrix and A  is an m,(1 2 )n − 3  sub-matrix.  Similarly, considering 

the horizontal dotted line only 

  A
A
A

=
L
NM
O
QP

1

2

where in this case A  is a (2,n) sub-matrix and A  is an (1 2 )m − 2 ,n sub-matrix. 

 

Considering both the horizontal and vertical lines 

  A
A A
A A

=
L
NM

O
QP

11 12

21 22

where A  is a (2,3) sub-matrix,  A  is a (2,(11 12 )n − 3 ) sub-matrix,  A  is an (( ,3) sub-

matrix and  A  is an (( ),( ) sub-matrix. 
21 )

)

m − 2

22 m − 2 n − 3

All matrix operations outlined in the previous sections can be performed on the sub-matrices 

as if they are normal matrix elements providing necessary precautions are exercised regarding 

dimensions. 

Example A 13  

Transposing partitioned matrices 

 A
A A
A A

=
L

N
MMM

O

Q
PPP
=
L
NM

O
QP

1 2 3 4
5 6 7 8
9 10 11 12

11 12

21 22
 

and 

  A
A A
A A

T
T T

T T=
L
NM

O
QP
=

L

N

MMMM

O

Q

PPPP
11 21

12 22

1 5 9
2 6 10
3 7 11
4 8 12
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Example A 14  

Multiplying partitioned matrices 

 A
A A
A A

B
B
B3,4

11 12

21 22 2 2
4 2

11

21 2 1

1 2 3 4
2 1 5 2
3 2 1 2

1 7
2 4
7 6
2 5

= −
−

L

N
MMM

O

Q
PPP
=
L
NM

O
QP =

−

L

N

MMMM

O

Q

PPPP
=
L
NM
O
QP,

,
,

and  

the product is 

 AB C
A B A B
A B A B

= =
+
+

L
NM

O
QP

( )
( )

,

11 11 12 21

21 11 22 21 2 1

 

where 

 
A B A B

A B A B

11 11 12 21

21 11 22 21

1 2
2 1

1 7
2 4

5 15
0 10

3 4
5 2

3 6
2 5

1 38
11 40

3 2
1 7
2 4

7 29 1 2
3 6
2 5

7 4

=
−

L
NM
O
QP
L
NM
O
QP =
L
NM
O
QP =

L
NM
O
QP −
L
NM
O
QP =
L
NM

O
QP

=
L
NM
O
QP = = −

−
L
NM
O
QP = −

;

;
 

noting that columns of A  must equal rows of B .  The product is xx xx

 AB C= =
L

N
MMM

O

Q
PPP

6 53
11 50
14 25

 

 

A 5 SOME SPECIAL MATRICES 

A 5.1 Symmetric Matrices 

A symmetric matrix is defined to be a matrix that remains invariant when transposed, ie, 

  A AT =

Symmetric matrices are always square matrices.  For any symmetric matrix A, the elements 

conform to the following 

  a aij j i=
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Example A 15  

  A =

L

N

MMMM

O

Q

PPPP

a
a

a
a

11

22

33

44

3 5 7
3 9
5 9 13
7 11 13

11

For any matrix A and for any symmetric matrix B the matrices 

  AA A A ABA A BAT T T T, , and

are all symmetric matrices. 

 

In least squares, we are often dealing with symmetric matrices.  For example, the matrix 

equation N B  often appears.  B is an (n,u) matrix of coefficients of the u 

unknowns in n equations, W is an (n,n) weight matrix (always symmetric) and N is the (u,u) 

symmetric coefficient matrix of the set of u normal equations. 

W Bu u u n
T

n n n u, , ,= ,

A 5.2 Skew-symmetric Matrices 

In contrast to the above, a skew-symmetric (or anti-symmetric) matrix is defined to be a 

square matrix that changes sign when transposed, so that 

  A AT = −

and the elements conform to the rule 

  a aij j i= −

Note that this definition means that the elements of the leading diagonal can only be zero.  An 

example of a skew-symmetric matrix of order 3 is 

  A = −
− −

L

N
MMM

O

Q
PPP

0
0

0

b c
b d
c d
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Example A 16  

Skew-symmetric matrices are found in some surveying and geodesy applications.  For 

instance, a 3D conformal transformation from one orthogonal coordinate system (x,y,z) to 

another (X,Y,Z) is defined by the matrix equation 

  
X
Y
Z

x
y
z

T
T
T

X

Y

Z

L

N
MMM

O

Q
PPP
=

L

N
MMM

O

Q
PPP
+
L

N
MMM

O

Q
PPP

λ κ φωR

where λ  is a scale factor, T T TX Y Z, and  translations between the coordinate origins and Rκ φω  

is a rotation matrix derived by considering successive rotations ω , φ  and κ  about the x, y and 

z axes respectively 

  Rκ φω

φ κ ω κ ω φ κ ω κ ω φ κ

φ κ ω κ ω φ κ ω κ ω φ κ

φ ω φ ω φ

=
+ −

− − +
−

L

N
MMM

O

Q
PPP

c c c s s s c s s c s c
c s c c s s s s c c s s
s s c c c

Note that c s sκ φ ω κ φ ω= cos sin sin , and x, y, z and X, Y, Z refer to the axes of right-handed 

orthogonal coordinate systems.  Rotations ω , φ  and κ  are considered as positive anti-

clockwise according to the "right-hand-grip rule". 

 

In many applications the rotation matrix Rκ φω  can be simplified because ω , φ  and κ  are 

small (often less than 3°).  In such cases, the sines of angles are approximately equal to their 

radian measures, the cosines are approximately 1 and products of sines are approximately 

zero.  This allows the rotation matrix Rκ φω  to be approximated by RS  

 RS =
−

−
−

L

N
MMM

O

Q
PPP

1
1

1

κ φ
κ ω
φ ω

 

This matrix is sometimes referred to as a skew-symmetric matrix.  Although the elements of 

the upper-triangular part are the opposite sign of those in the lower triangular part, it does not 

conform to the definition above, since the leading diagonal elements are not zero. 

© 2005, R.E. Deakin Notes on Least Squares (2005) A20 



RMIT University Geospatial Science 

Note that RS  can be expressed as the sum of the identity matrix I and a skew-symmetric 

matrix S 

 R IS =
−

−
−

L

N
MMM

O

Q
PPP
=
L

N
MMM

O

Q
PPP
+ S

−
−

−

L

N
MMM

O

Q
PPP
= +

1
1

1

1 0 0
0 1 0
0 0 1

0
0

0

κ φ
κ ω
φ ω

κ φ
κ ω
φ ω

 

A 5.3 Symmetry and Skew-symmetry 

Every square matrix can be uniquely decomposed into the sum of a symmetric and skew-

symmetric matrix.  Consider the following 

 

A A A A

A A A A

A A

= + −

= + + −

= +

1
2

1
2

1
2

1
2

T T

T T

Sym Skew

c h c h 

where 

 
A A A

A A A A A A
Sym

T

Sym
T T T T

Sym

= +

= + = + =

1
2

1
2

1
2

( )

( ) ( )

is symmetric because
 

and 

 
A A A

A A A A A A A A
Skew

T

Skew
T T T T T

Skew

= − −

= − = − = − − = −

1
2

1
2

1
2

1
2

( )

( ) ( ) ( )

is skew symmetric because
 

A 5.4 Orthogonal Matrix 

An orthogonal matrix is a square matrix satisfying the following two conditions: 

 1. the norms of all its rows and columns are equal to unity, and 

 2. any row is orthogonal to every other row in the matrix and similarly for the 

columns. 

These two conditions imply that if A is an orthogonal matrix, then 

  (I is the Identity matrix) AA A A IT T= =

and hence an orthogonal matrix has the very useful property that its inverse matrix is the same 

as its transpose matrix, or 

  (if A is orthogonal) A A− =1 T

The terms norm and orthogonal are applicable to vector algebra.  The norm of a vector is the 

magnitude of the vector and is the square root of the product of the vector and its transpose.  
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Any row (or column) of a matrix has all the characteristics of a vector, and hence the norm of 

any row (or column) of a matrix is the square root of the product of the row (or column) by its 

transpose.  Two vectors are orthogonal if, and only if, their scalar product is zero.  

Considering rows and columns of the matrix as vectors, then any two matrix rows (or 

columns) are orthogonal if their scalar product is zero. 

Example A 17  

Rotation matrices are examples of orthogonal matrices.  For example, consider a point P with 

coordinates P e  in the east-north coordinate system.  If the axes are rotated about the 

origin by an angle 

n,a f
θ  (measured clockwise from north), P will have coordinates  in the 

rotated system equal to 

′e n, ′

 
′ = −

′ = +

e e n
n e n

cos sin
sin cos

θ θ
θ θ

 

These equations can be written in matrix notation as 

 
′
′
L
NM
O
QP =

−L
NM

O
QP
L
NM
O
QP

′
′
L
NM
O
QP =
L
NM
O
QP

e
n

e
n

e
n

e
n

cos sin
sin cos

θ θ
θ θ θor R  

where Rθ

θ θ
θ θ

=
−L

NM
O
QP

cos sin
sin cos

 is known as the rotation matrix. 

The norms of the columns and rows of Rθ  are unity since sin cos2 2 1θ θ+ =  and the columns 

and rows are orthogonal since sin cos sin cosθ θ θ θ− = 0 .  Hence Rθ  is orthogonal and its 

inverse is equal to its transpose.  This is useful in defining the transformation from  to 

 coordinates.  Pre-multiplying both sides of the original transformation by the inverse R

′e n, ′

e n, θ
−1 

gives 

 R R R Rθ θ θ θ
− − −′

′
L
NM
O
QP =

L
NM
O
QP

L
NM
O
QP =

′
′
L
NM
O
QP

1 1 1e
n

e
n

e
n

e
n

or  since R R Iθ θ
− =1  

and 

 
e
n

e
n

e
n

TL
NM
O
QP =

′
′
L
NM
O
QP = −
L
NM

O
QP

′
′
L
NM
O
QPRθ

θ θ
θ θ

cos sin
sin cos

 since R Rθ θ
− =1 T  
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